Cho tam giác ABC cân tại A (Góc A nhỏ hơn 90 độ ) . Vẽ hai đường cao BH ; Ck cắt nhau tại I (H thuộc AC ; K thuộc AB )
a) C/m : tam giác BCK = tam giác CBH
B) C/m : tam giác BIC cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tam giác vuông BCK & CBH có:
B = C
BC chung
=>tam giác BCK = CBH ( cạnh huyền - góc nhọn)
b) Ta có : IBC = ICB ( 2 góc tương ứng)
=> tam giác IBC là tam giác cân
A B C H 20 0
Giải: Xét t/giác BHC có góc H = 900
=> góc HBC + góc C = 900 (...)
=> góc C = 900 - góc HBC = 900 - 200 = 700
Vì t/giác ABC cân tại A => góc B = góc C
Xét t/giác ABC có góc A + góc B + góc C = 1800 (tổng 3 góc của 1 t/giác)
=> góc A = 1800 - 2.góc C = 1800 - 2.700 = 1800 - 1400 = 400
Vậy góc A = 400
Vì ΔABC cân tại A (gt)
⇒ AB=AC
Vì BH⊥AC (gt)
⇒ ∠BHA=∠BHC=900
Vì CK⊥AB (gt)
⇒ ∠CKA=∠CKB=900
Xét ΔABH và ΔACK có:
∠BHA=∠CKA=900
∠BAC chung
AB=AC
⇒ ΔABH=ΔACK (cạnh huyền - góc nhọn)
⇒ ∠ABH=∠ACK (2 góc tương ứng)
Vậy ∠ABH=∠ACK
tự kẻ hình nha
a)xét tam giác ADB và tam giác ADC có
A1=A2(gt)
AD chung
AB=AC(gt)
=> tam giác ADB= tam giác ADC(cgc)
b) vì tam giác BCE vuông tại C=> BEC+EBC=90 độ=> BEC=90 độ-EBC
ta có ACB+ACE=BCE=90 độ=> ACE=90 độ-BCE
vì tam giác ABC cân A=> ABC=ACB
=> BEC=ACE=90 độ-ABC=> tam giác ACE cân A
c) xét tam giác AME và tam giác AMC có
AE=AC( tam giác ACE cân A)
AME=AMC(=90 độ)
AM chung
=> tam giác AME=tam giác AMC(ch-cgv)
=> EM=CM( hai cạnh tương ứng)
=> M là trung điểm => BM là trung tuyến
vì AB=AC mà AC=AE=> AB=AE=> A là trung điểm BE=> CA là trung tuyến
từ tam giác ABD= tam giác ACD=> BD=CD (hai cạnh tương ứng)=> D là trung điểm BC=> ED là trung tuyến
Vì ED giao AC tại N mà ED,AC, BM là trung tuyến=> BM, AC,ED giao nhau tại N=> N thuộc BM=> B,N,M thẳng hàng
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
góc BAE chung
Do đó: ΔABE=ΔACF
=>BE=CF
b:
Sửa đề Chứng minh BE+CF>BH+CH
BE>BH
CF>CH
=>BE+CF>BH+CH
a) Xét tam giác BCK vuông ở Kvà tam giác CBH vuông ở H có:
∠B=∠C(t/c tam giác ABC cân ở A)
BC là cạnh chúng
=>△BCK=△CBH(ch-gn)
b)Xét tam giác AKC vuông ở K và tam giác AHB vuông ở H có:
∠A là góc chung
AB=AC(t/c △ ABC cân)
=> △AKC=ΔAHB(ch-gn)
=>∠B1=∠C1(2 góc t/ư)
Mà góc ∠ABC=∠ACB
=>∠B2=∠C2
=>Tam giác BIC cân tại I
A B C K H I 1 1 2 2
cảm ơn bạn