K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Bạn tự vẽ hình nha 

a , Có BH vuông góc với MC nen tam giác BHC vuông tại H suy ra góc BHC = 90 độ suy ra góc HCB + góc HBC = 90 độ 

Có góc ABC = 90 độ ( hình vuông ABCD ) . Có góc MBH + góc HBC = góc ABC = 90 độ 

Suy ra góc MBH = góc BCH ( cùng phụ với góc HBC ) 

Xét tam giác MHB và tam giác BHC có :

Góc MHB = Góc BHC ( = 90 độ )

Góc MBH = góc BCH ( c.m.t)

Suy ra tam giác MHB đồng dạng với tam giác BHC ( g.g )

Suy ra BH/HC= HM / HB hay BH/HM = HC/ BH 

Suy ra BH^2 = HM . HC

11 tháng 3 2017

Mink chứng minh tiêp câu b nha

Có BH ^2 = HM . HC

BH ^2 = 4 .9 

BH ^2 = 36 

BH = 6 cm 

Có tam giác BHM vuông tại M

MH+ HB= MB ( định lý py ta go )

4^2 + 6^2 = MB^2

16 + 36 = MB ^2

MB^2 = 52

MB = Căn 52

mà MB = BN 

suy ra BN = Căn 52

1:

Sửa đề: ΔBEC

Xét ΔHBC vuông tại H và ΔBEC vuông tại B có

góc HCB chung

=>ΔHBC đồng dạng với ΔBEC

2: ΔHBC đồng dạng với ΔBEC

=>CH/CB=BH/BE

=>CH/CD=BH/BF

11 tháng 3 2023

ko đc sửa đề bạn ơi

 

14 tháng 11 2023

a/

��⊥�� (gt)

��⊥��⇒��⊥��

=> ME//AF

��⊥��⇒��⊥��

=> MF//AE

=> AEMF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có �^=90�

=> AEMF là HCN (hbh có 1 góc vuông là HCN)

b/

Ta có

MF

Xét tg vuông ABC có

MB=MC (gt); MF//AE => MF//AB 

=> AF=BF (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

MF=IF (gt)

=> AMCI là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Ta có 

��⊥��⇒��⊥��

=> AMCI là hình thoi (hbh có 2 đường chéo vuông góc là hình thoi)

c/

Ta có

AI//CM (cạnh đối hình thoi) => AI//BC => ABCI là hình thang

Xét tứ giác ABMI có

AI//BC (cmt) => AI//BM

MF//AB (cmt) => MI//AB

=> ABMI là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Để ABCI là hình thang cân => AB=CI (1)

Ta có

AB=MI (cạnh đối hình bình hành ABMI) (2)

AM=CI (cạnh đối hình thoi AMCI) (3)

Từ (1) (2) (3) => AB=AM=MI=CI

Xét tg vuông ABC có

BM=CM ⇒��=��=��=��2 (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> AB=AM=BM => tg ABM là tg đều ⇒�^=60�

Để ABCI là hình thang cân thì tg vuông ABC có �^=60�

d/

Xét tứ giác ADBM có

DE=ME (gt)

AE=BE (gt)

=> ADBM là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

=> AD//BM (cạnh đối hbh) => AD//BC

Ta có

AI//CM (cạnh đối hình thoi AMCI)

=> A;D;I thẳng hàng (từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)

Ta có

AD=BM (cạnh đối hbh ADBM)

AI=CM (cạnh đối hình thoi AMCI)

BM=CM (gt)

=> AD=AI => A là trung điểm DI

chúc bạn học tốt

22 tháng 4 2022

loading...

loading...  

6 tháng 5 2018

a) Chú ý tam giác ABD cân tại B nên BM là đường phân giác cũng là đường cao, từ đó  B M ⊥ A D .

b) Chú ý AK, BM, DH là ba đường cao của tam giác AMD.