K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

a) Xét ΔABD và  ΔACE có:

∠ADB = ∠AEC = 900 (gt)

BA = AC (gt)

∠BAC   (chung)

⇒ ΔABD =ΔACE (cạnh huyền – góc nhọn)

b) Có ΔABD =ΔACE  ⇒ ∠ABD = ∠ACE (hai góc tương ứng)

mặt khác: ∠ABC = ∠ACB (D ABC cân tại A )

⇒ ABC – ABD =ACB – ACE ⇒ HBC = HCB

⇒ ΔBHC là tam giác cân tại H

c) Có ΔHDC vuông tại D nên HD < HC

mà HB = HC (ΔBHC cân tại H)

⇒ HD < HB

d) Gọi I là giao điểm của BN và CM

* Xét ΔBNH và ΔCMH có:

BH = CH (ΔBHC cân tại H)

∠BHN = ∠CHM (đối đỉnh)

NH = HM (gt)

ΔBNH = ΔCMH (c.g.c) ⇒ ∠HBN = ∠HCM

* Lại có: ∠HBC = ∠HCB  (Chứng minh câu b)

⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM ⇒ ∠IBC = ∠ICB

⇒ IBC cân tại I ⇒ IB = IC   (1)

Mặt khác ta có:  AB =  AC (D ABC cân tại A)  (2)

HB = HC (D HBC cân tại H) (3)

* Từ (1); (2) và (3)

Þ 3 điểm I; A; H cùng nằm trên đường trung trực của BC

⇒ I; A; H thẳng hàng

⇒  các đường thẳng BN; AH; CM đồng quy

a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có

AB=AC

\(\widehat{NAC}\) chung

Do đó: ΔAMB=ΔANC

Suy ra: AM=AN

b: Xét ΔNBC vuông tại N và ΔMCB vuông tại M có

BC chung

NC=MB

Do đó: ΔNBC=ΔMCB

Suy ra: \(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

=>IB=IC

Ta có: IB+IM=MB

IN+IC=NC

mà MB=NC

và IB=IC

nên IM=IN

hay ΔMIN cân tại I

c: Xét ΔNBK và ΔMCK có 

NB=MC

\(\widehat{NBK}=\widehat{MCK}\)

BK=CK

Do đó: ΔNBK=ΔMCK

Suy ra: KN=KM

hayΔKMN cân tại K

28 tháng 1 2018

Nhật Tân

Thứ 6, ngày 06/01/2017 14:54:35

Cho tam giác ABC cân tại A,góc A = 90 độ,Các đường trung trực của AB AC cắt nhau tại O,Chứng minh AO là phân giác của góc A,qua B kẻ đường thẳng vuông góc với AB,qua C kẻ đường thẳng vuông góc với AC,Chứng minh AK là phân giác của góc A,BD vuông góc với AC,CE vuông góc với AB,BD cắt CE tại H,Chứng minh bốn điểm A O K H thẳng hàng,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

p/s : kham khảo

28 tháng 1 2018

pn đang làm cái j vậy

a: Xét ΔABD vuông tại D và ΔACD vuông tại C có

AB=AC

AD chung

Do đó: ΔABD=ΔACD

=>DB=DC

=>D là trung điểm của BC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

\(\widehat{EAD}=\widehat{FAD}\)(ΔABD=ΔACD)

Do đó: ΔAED=ΔAFD

=>AE=AF

=>ΔAEF cân tại A

 

13 tháng 2 2022

Vì tam giác ABK = tam giác ACE => AK = AE ( 2 cạnh tương ứng ) 

ta có \(\dfrac{AE}{AB}=\dfrac{AK}{AC}\)do AB = AC ; AE = AK ( cmt ) 

=> EK // BC ( Ta lét đảo ) 

\(\Delta\) cân tại A nên: AB = AC 

mà AB = 4 \(\Rightarrow\) AC = 4

Áp dụng định lí Pytago, ta có

\(BC^2=AB^2+AC^2=4^2+4^2\\ =\sqrt{16+16}=4\sqrt{2}\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

Lời giải:

a) Xét tam giác vuông $ABH$ và $ACK$ có:

$\widehat{A}$ chung 

$AB=AC$ (do $ABC$ cân tại A)

$\Rightarrow \triangle ABH=\triangle ACK$ (ch-gn)

$\Rightarrow AH=AK$

b) 

Xét tam giác vuông $AKI$ và $AHI$ có:$AI$ chung

$AK=AH$ (cmt)

$\Rightarrow \triangle AKI=\triangle AHI$ (ch-cgv)

$\Rightarrow \widehat{KAI}=\widehat{HAI}$ nên $AI$ là tia phân giác $\widehat{A}$

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

Hình vẽ:undefined