K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2017

D A B C E F Q P O R

Giải

a) Trong \(\Delta\)BDC có CO và DF là trung tuyến nên giao điểm Q là trọng tâm. Do đó: OQ = \(\frac{1}{2}\)QC = \(\frac{1}{3}\)OC (1)

Tương Tự: OP = \(\frac{1}{2}\)AP = \(\frac{1}{3}\)OA (2)

Từ (1) và (2) suy ra AP = PQ = QC

b) Theo trên ta có, P là trọng tâm của \(\Delta\)ABD nên:

EP = \(\frac{1}{2}\)PB = PR (gt)

Tứ giác ARQE có: PA = PQ (cmt) ; PE = PR (cmt)

Tức là tứ giác ARQE có các đường chéo cắt nhau ở trung điểm của mỗi đường. Vậy tứ giác ARQE là hình bình hành

2 tháng 12 2018

bạn kiếm câu này ở đâu z mình đang luyện thi toán casio mà câu này khó quá bạn có biết chỉ mình 

26 tháng 5 2017

Kẻ BH là đường cao ứng với cạnh CD của hình bình hành ABCD

=> SABCD = BH.CD

Theo đề bài ta có chu vi hình bình hành ABCD bằng 60cm.

=> 2(AB + BC) = 60 ó 2.3BC = 60 ó BC = 10cm

Xét tứ giác KICB ta có:

IC = BC = KB = IK = 1 2 AB = 10cm

=> IKBC là hình thoi (dấu hiệu nhận biết).

Mà B ^ = 1200 =>  I C B ^  = 1800 – 1200 = 600

Xét tam giác ICB có: I C = B C I C B = 60 0

=> ICB là tam giác đều. (tam giác cân có góc ở đỉnh bằng 600).

=> BH vừa là đường cao vừa là đường trung tuyến ứng hay H là trung điểm của IC.

=> HI = HC = 1 2 BC = 5cm

Áp dụng định lý Pytago với tam giác vuông HBC ta có:

BH = B C 2 − H C 2 = 10 2 − 5 2 = 75 = 5 3 cm

=> SABCD = BH.AB = BH.2BC = 5 3 .2.10 = 100 3 cm2

Đáp án cần chọn là: A

3 tháng 12 2021

Chiều cao là \(\dfrac{10+10}{2}=10\left(cm\right)\)

Diện tích hbh là \(10\cdot6=60\left(cm^2\right)\)

3 tháng 12 2021

mn ơi giuos mik ik

mik đang gấp ạ

xin cảm ơn

2 tháng 9 2016

A B C D A' B' C' D' M N P Q E F

Lấy E là trung điểm A'D ; F là trung điểm BC'.

Dễ dàng chứng minh được \(\Delta EQM=\Delta FNP\left(c.g.c\right)\)

Từ đó suy ra \(MQ=NP\)

CMTT có \(MN=PQ\)

Do đó \(MNPQ\)là hình bình hành.

Vậy ...

5 tháng 6 2018

SABCD = AH. CD = 5. 9,6 = 48 (cm2)

Đáp án cần chọn là: A