K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

A B C D y x

Vì Cy // AB nên góc ABC = BCD

Bx // AC nên góc ACB = CBD

Xét ΔABC và ΔDCB có:

ABC = BCD (C/M trên)

AC chung

ACB = CBD ( C/M trên)

=>ΔABC = ΔDCB ( g.c.g)

=> AB = CD ( 2 cạnh tương ứng) → ĐPCM.

31 tháng 7 2019

Hình bạn tự vẽ nha!

a) Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (định lí tổng 3 góc của một tam giác)

Thay số vào ta được:

\(60^0+\widehat{B}+40^0=180^0\)

=> \(\widehat{B}=180^0-40^0-60^0\)

=> \(\widehat{B}=140^0-60^0\)

=> \(\widehat{B}=80^0\)

hay \(\widehat{ABC}=80^0.\)

Còn câu b) mình đang nghĩ nhé.

Chúc bạn học tốt!

31 tháng 7 2019

cam on ban nha

30 tháng 1 2019

tu ve hinh : 

a, AC = AB => tamgiac ABC can tai A (dn)

=> goc ABC  = goc ACB (tc) 

xet tam giac ABH va tamgiac ACH co : goc AHC = goc AHB do AH | BC (gt)

=>  tam giac ABH = tamgiac ACH (ch - gn)            (1)

b, tamgiac AHB vuong tai H do AH | BC (gt)

=> AB2 = AH2 + BH2 

 (1) =>  BH  = HC ma BC = 6 (gt)=> BH = 3

BA = 5 (gt)

=> AH = 52 - 32

=> AH = 16

=> AH = 4 do AH  > 0

c, xet tamgiac BMH va tamgiac NCH co : goc BMH = goc NCH = 90o do MH | AB va HN | AC (gt)

goc ABC = goc ACB (cmt) va BH = HC (cmt)

=>  tamgiac BMH = tamgiac NCH (ch - gn) 

=> MH = HN (dn)

=> tamgiac MNH can tai H (dn)

d, cm theo truong hop ch - gn di, moi tay qa

1 tháng 2 2019

                       Giải

( Bạn tự vẽ hình nhé )

a, \(AB=AC\)  \(\Rightarrow\)\(\Delta ABC\)  cân tại A 

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\) 

Xét \(\Delta ABH\) và \(\Delta ACH\) có : \(\widehat{AHC}=\widehat{AHB}\)  do \(AH\perp BC\)

\(\Delta ABH=\Delta ACH\)              (1) [ đpcm]

b, \(\Delta AHB\) vuông tại H do \(AH\perp BC\)

 \(\Rightarrow AB^2=AH^2+BH^2\)

Từ  (1) suy ra  BH  = HC mà BC = 6 nên BH = 3

\(\Rightarrow\)BA = 5 

\(\Rightarrow AH^2=5^2-3^2\)

\(\Rightarrow AH^2=25-9\)

\(\Rightarrow AH^2=16\)

\(\Rightarrow AH=\sqrt{16}\)

\(\Rightarrow AH=4cm\)

\(\Rightarrow\) AH = 4cm do AH  > 0

c, Xét \(\Delta BMH\) và \(\Delta NCH\) có :\(\widehat{BMH}=\widehat{NCH}=90^0\) do \(MH\perp AB\) va \(HN\perp AC\)

 \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)và \(BH=HC\)

\(\Rightarrow\Delta BHM=\Delta NCH\)  

\(\Rightarrow MH=HN\)

\(\Rightarrow\Delta MNH\) cân tại H \(\left(đpcm\right)\)

d, ...

19 tháng 5 2016

a)có Bx//AC(gt)=>góc B= góc C (2 góc so le trong)

Xét tam giác AHC vuông tại H và tam giác DKB vuông tại K có:

AC=BD(gt)

góc B=góc C(cmt)

=>tam giác AHC=tam giác DKB(cạnh huyền -góc nhọn) 

=>AH=DK(2 cạnh tương ứng)

a: Xet ΔAHB vuôg tại H và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

b: Xét ΔAHB vuông tại H có HE là đường cao

nen AE*AB=AH^2

Xét ΔAHC vuông tạiH có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

c: góc MEB=góc AEF=góc AHF=góc MCF

Xét ΔMEB và ΔMCF có

góc MEB=góc MCF

góc M chung

=>ΔMEB đồng dạng với ΔMCF

=>ME/MC=MB/MF

=>ME/MB=MC/MF

=>ΔMEC đồng dạng với ΔMBF

=>góc MCE=góc MFB

2 tháng 5 2017

A B C G M

Giải:

a, Ta có: \(AB^2+AC^2=6^2+8^2=100\)

\(BC^2=100\)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A ( đpcm )

b, \(\Delta ABC\) vuông tại A có AM là trung tuyến

\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow AM=5\)

\(AG=\dfrac{2}{3}.AM\Rightarrow AG=\dfrac{10}{3}\left(cm\right)\)

Vậy...

4 tháng 5 2017

cam on ban