Cho a, b, c thuộc Z ; Biết a*b - a*c - c^2 + b*c = -1 ; Tính a + b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-a+b-b-c+a+c-a=-a-a+a+(b-b)+(-c+c)=-a ,vay A duong neu a la so am
+ x = 0 => c chia hết cho 3
+x= 1=> a +b chia hết cho 3 (2)
+ x = -1=> a-b chia hết cho 3 (3)
(2)(3) => a chia hết cho 3; b chia hế cho 3
a) Để A và n thuộc Z => n+1 chia hết cho n-2
A=(n-2+3) chia hết cho n-2
=> 3 chia hết cho n-2
lập bảng=> n thuộc {3,1,5,9,(-1)}
b) A lớn nhất khi n-2 nhỏ nhất=> n-2=1
=> n=3
Nhớ tk cho mk nha!
+) Xét trường hợp \(\dfrac{a}{b}>1\Rightarrow\) \(a>b\Rightarrow an>bn\) (do \(n\in\) N*)\(\Rightarrow an+ab>bn+ab\Rightarrow a.\left(b+n\right)>b.\left(a+n\right)\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\)
+) Xét trường hợp \(\dfrac{a}{b}\le1\Rightarrow\)\(a\le b\Rightarrow an\le bn\) (do \(n\in\) N*)
\(\Rightarrow an+ab\le bn+ab\Rightarrow a.\left(b+n\right)\le b.\left(a+n\right)\Rightarrow\dfrac{a}{b}\le\dfrac{a+n}{b+n}\)
Vậy nếu \(\dfrac{a}{b}>1\) thì \(\dfrac{a}{b}>\dfrac{a+n}{b+n}\); nếu \(\dfrac{a}{b}\le1\) thì \(\dfrac{a}{b}\le\dfrac{a+n}{b+n}\).
áp dụng bất đẳng thức Svac-xơ là ra luôn nha bạn
chứng minh bạn có thể tìm hiểu thêm
tick mình nha
1) Tìm A thuộc B
=> \(\hept{\begin{cases}x>-9\\x< -4\end{cases}\Rightarrow}-4>x>-9\)
Mà \(x\inℤ\) => \(x\in\left\{-8;-7;-6;-5\right\}\)
2) Tìm B thuộc C
=> \(\hept{\begin{cases}x< -4\\x\ge-2\end{cases}}\) => vô lý
=> không tồn tại x thỏa mãn
3) Không có tập hợp D