K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

xin giúp tôi với,please

 

 

22 tháng 3 2018

Ta có tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )

=> góc ABD = góc HBD = 30 độ

Xét tam giác ABC ta có

góc ABC + góc ACB + góc BAC = 180 độ

=> góc ACB = 30 độ

Ta có góc BDH = 90 độ - 30 độ = 60 độ

        góc CDH = 90 độ - 30 độ 60 độ

Tam giác BHD = tam giác CHD ( g.c.g )

=> BH = CH ( hai cạnh tương ứng )           ( 1 )

Tam giác CHD vuông tại H => CD > CH ( trong tam giác vuông cạnh huyền là cạnh lớn nhất )         ( 2 )

Từ (1) và (2) => BH < CD

28 tháng 9 2019

Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)

 Trong tam giác vuông BAH có \(\widehat{B}=60^o\)\(\widehat{BHA}=90^o\)

\(\Rightarrow\widehat{BAH}=30^o\)

   Do AB//HE

=> \(\widehat{BAH}=\widehat{AHE}=30^o\)

29 tháng 9 2019

Do \(\hept{\begin{cases}AB\perp AC\\HE\perp AC\end{cases}}\Rightarrow AB//HE\)

 Trong tam giác vuông BAH có \widehat{B}=60^oB=60o\widehat{BHA}=90^oBHA=90o

\Rightarrow\widehat{BAH}=30^o⇒BAH=30o

   Do AB//HE

=> \widehat{BAH}=\widehat{AHE}=30^oBAH=AHE=30o

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>góc BAH=góc CAH=50/2=25 độ

c: góc AKC=góc AHC=90 độ

=>AKHC nội tiếp

=>góc KAH=góc KCH

a: \(\widehat{C}=90^0-60^0=30^0\)

Xét ΔABC có \(\widehat{C}< \widehat{B}\)

nên AB<AC

Xét ΔABC có AB<AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

Do đó: ΔAHC=ΔDHC

c: Xét ΔBAC và ΔBDC có 

CA=CD

\(\widehat{ACB}=\widehat{DCB}\)

CB chung

Do đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)

a: \(\widehat{C}=90^0-60^0=30^0\)

Xét ΔABC có \(\widehat{C}< \widehat{B}\)

nên AB<AC

Xét ΔABC có AB<AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

Do đó: ΔAHC=ΔDHC

c: Xét ΔBAC và ΔBDC có 

CA=CD

\(\widehat{ACB}=\widehat{DCB}\)

CB chung

Do đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

b: \(\widehat{BAC}=70^0\)

nên \(\widehat{BAH}=35^0\)

=>\(\widehat{B}=55^0\)

=>BH<AH

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: AD=AE

hay ΔADE cân tại A