K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

BM= căn(9^2+15^2)= 17,49......

9 tháng 3 2017

làm thế nào vậy ?

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

AH=15*20/25=300/25=12(cm)

1 tháng 4 2023

AH=15*20/25=300/25=12(cm)

19 tháng 1 2017

Bài tập tổng hợp chương 2 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Xét Δ ABC cân tại A có BC = 30( cm )

⇒ BH = CH = 15( cm ).

Áp dụng đinh lý Py – ta – go ta có:

2 tháng 8 2019

Bài tập: Diện tích tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Xét Δ ABC cân tại A có BC = 30( cm )

⇒ BH = CH = 15( cm ).

Áp dụng đinh lý Py – ta – go ta có:

DD
12 tháng 6 2021

\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{10}{20}=\frac{1}{2}\)

\(BC=BD+CD=10+20=30\left(cm\right)\)

Theo định lí Pythagore ta có: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow30^2=\left(\frac{1}{2}AC\right)^2+AC^2=\frac{5}{4}AC^2\)

\(\Leftrightarrow AC=12\sqrt{5}\left(cm\right)\Rightarrow AB=6\sqrt{5}\left(cm\right)\)

\(AH=\frac{AB.AC}{BC}=\frac{12\sqrt{5}.6\sqrt{5}}{30}=12\left(cm\right)\)

\(BH=\frac{AB^2}{BC}=\frac{\left(6\sqrt{5}\right)^2}{30}=6\left(cm\right)\)

\(\Rightarrow HD=BD-BH=10-6=4\left(cm\right)\)

không mở được link nhé khánh hà

18 tháng 3 2023

đề có thiếu gì ko bn

18 tháng 3 2023

có viết các cặp tam giác đồng dạng và giải thích ạ

30 tháng 3 2022

1. Một hình tam giác có 3 đường cao

2. Diện tích tam giác là:

45 x 28 : 2 = 630 (cm)

Đáp số: 630 cm

9 tháng 2 2017

ấn vào đúng 0 

đáp án và lời giải sẽ hiện ra trước mắt

Kết quả hình ảnh cho online math

1 tháng 9 2018

Áp dụng định lí Py-ta-go cho  \(\Delta AHC\) vuông tại H ta được :

\(HC^2=AC^2-AH^2\)

\(\Leftrightarrow HC^2=20^2-12^2\)

\(\Leftrightarrow HC^2=256\)

\(\Leftrightarrow HC=16\left(cm\right)\)

Áp dụng hệ thức lượng ta được : \(AH^2=HC.HB\)

\(\Leftrightarrow12^2=BH.16\)

\(\Leftrightarrow BH=9\left(cm\right)\)

Ta có :  \(S_{\Delta ABC}=\frac{AH.BC}{2}=\frac{AH.\left(BH+CH\right)}{2}=\frac{12\left(9+16\right)}{2}=\frac{300}{2}=150\left(cm^2\right)\)

Vậy  \(S_{\Delta ABC}=150cm^2\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\cdot\left(BH+9\right)=20^2\)

\(\Leftrightarrow BH^2+9BH-400=0\)

\(\Leftrightarrow BH^2+25BH-16BH-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AH^2=20^2-16^2=144\)

hay AH=12(cm)