K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2021

B.12cm

28 tháng 12 2020

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=BH^2+CH^2\)

\(\Leftrightarrow AC^2=5^2+12^2=169\)

hay AC=13(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=\dfrac{AH^2}{HC}=\dfrac{12^2}{5}=28.8\left(cm\right)\)

Ta có: BC=HB+HC(H nằm giữa B và C)

nên BC=28,8+5=33,8(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=33.8^2-13^2=973.44\)

hay \(AB=31.2cm\)

Vậy: AC=13cm; AB=31,2cm; BC=33,8cm; BH=28,8cm

4 tháng 3 2022

tham khảo

a,AC=√BC2−AB2=16(cm)(pytago)

Áp dụng HTL: AH⋅BC=AB⋅AC⇔AH=19220=9,6(cm)

4 tháng 3 2022

lỗi sorry nha

16 tháng 12 2021

A

16 tháng 12 2021

Chọn A

23 tháng 10 2021

A

AE=BC=20cm

\(HB=\sqrt{AB^2-AH^2}=5\left(cm\right)\)

BC=HB+HC=5+16=21(cm)

\(AC=\sqrt{AH^2+HC^2}=20\left(cm\right)\)

C=AB+BC+AC=20+21+13=54(cm)

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o