Cho hai biểu thức:A= 101 x 50 ; B=50 x 49 + 53 x 50.
Không tính trực tiếp, hãy sữ dụng tính chất của phép thính để so sánh giá trị số của A và B.
Giúp mình nha, cảm ơn nhiều!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 101 x 50
B = 50 x 49 + 53 x 50
= 50 x (49 + 53)
= 50 x 102
Vì 50 = 50 và 101 < 102 Nên A < B.
a) A= 101 x 50
B = 50 x 49 + 53 x 50
= 50 x (49 + 53)
= 50 x 102
Vì 50 = 50 và 101 < 102 Nên A < B.
a. A= 101 x 50
B = 50 x 49 + 53 x 50
= 50 x (49 + 53)
= 50 x 102
Vì 50 = 50 và 101 < 102 Nên A < B.
b. Đảo ngược mỗi phân số đã cho
Viết 13 27 đảo ngược thành 27 13
Viết 7 15 đảo ngược thành 15 7
So sánh 27 13 và 15 7
Ta có: 27 13 = 2 1 13 và 15 7 = 2 1 7
Vì 1 13 < 1 7 nên 2 1 13 < 2 1 7
Do đó 27 13 < 15 7
Vì 27 13 < 15 7 nên 13 27 > 7 15
a: A
b: =101-4,68+8,96
=105,28
c: x-38,75=206,99
=>x=245,74
B1:
\(a.301^2=\left(300+1\right)^2=300^2+2.300.1+1^2\\ =90000+600+1=90601\\ b.88^2+2.88.12+12^2=\left(88+12\right)^2=100^2=10000\\ c.99.100=100^2-100=10000-100=9900\\ d,153^2+94.153+47^2=153^2+2.153.47+47^2=\left(153+47\right)^2=200^2=40000\)
B2:
\(A=x^2-20x+101\\ =x^2-2.x.10+10^2+1\\ =\left(x-10\right)^2+1\ge1\forall x\in R\left(Vì:\left(x-10\right)^2\ge0\forall x\in R\right)\\ \Rightarrow min_A=1\Leftrightarrow x-10=0\Leftrightarrow x=10\)
a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=115\)
c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)
\(C=x^2-y^2=\left(x+y\right)\left(x-y\right)=15\cdot5=75\)
Ta có : 50 x 49 + 53 x 50 = 50 x ( 49 + 53 ) = 50 x 102
Vì 50 x 102 > 101 x 50
Nên B > A
Hay A < B
a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=125\)
b:\(B=x^4+y^4\)
\(=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=125^2-2\cdot2500\)
=10625
c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)
\(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=15\cdot5=75\)
\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)
a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
\(minA=2\Leftrightarrow x=3\)
b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)
\(minB=51\Leftrightarrow x=5\)
c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
B=50x49+53x50
B=50x(49+53)
B=50x102
vậy A<B vì 50x101<50x102
Bg
Ta có: A = 101.50 và B = 50.49 + 53.50
Xét B = 50.49 + 53.50:
=> B = 50.(49 + 53)
=> B = 50.102
Vì 101.50 < 50.102 nên A < B
Vậy A < B