K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2015

A = 2002.2002

A = (2001+1).2002

A = 2001.2002+2002

=> A<B

24 tháng 11 2017

Có : A = 2002^2 = 2002.2002 =  (2001+1).(2002 = 2001.2002+2002 = (2001.2002+2001)+1 = 2001.(2002+1)+1 = 2001.2003+1>2001.2003

=> A > B 

k mk nha

24 tháng 11 2017

Ta có : 

\(B=2001x2003=2001x\left(2001+2\right)=2001^2+4002\)

\(A=2002^2=\left(2001+1\right)^2=2001^2+4002+1=2001^2+4003\)

=> A>B 

4 tháng 5 2016

Ta có:

\(\frac{2000}{2001}\)\(\frac{2000}{2001+2002}\)(1)

\(\frac{2001}{2002}\)\(\frac{2001}{2001+2002}\)(2)

Cộng các bất đẳng thức (1) và ( 2) vế với nhau:

Vậy \(\frac{2000}{2001}\)\(\frac{2001}{2002}\)\(\frac{2000+2001}{2001+2002}\)hay A > B.

10 tháng 5 2015

Trong phần câu hỏi tương tự có đó!                                                    

31 tháng 3 2015

                                         Giải

Ta có\(A=\frac{2002}{2001}+\frac{2001}{2002}\)và \(B=\frac{2000}{2001}+\frac{2001}{2002}\)

Ta nhận xét thấy A và B cùng có chung 1 số hạng là \(\frac{2001}{2002}\)

Nên ta chỉ so sánh \(\frac{2002}{2001}\)và \(\frac{2000}{2001}\)ta so sánh 2 phân số đó với 1

Vì 2002>2001 nên \(\frac{2002}{2001}\)> 1

Vì 2000<2001 nên \(\frac{2000}{2001}\)<1

\(\Leftrightarrow\)\(\frac{2002}{2001}>\frac{2000}{2001}\)

\(\Leftrightarrow\)\(\frac{2002}{2001}+\frac{2001}{2002}>\frac{2000}{2001}+\frac{2001}{2002}\)

Vậy A>B

24 tháng 10 2021

\(\Rightarrow2A=2+2^2+2^3+...+2^{2003}\\ \Rightarrow2A-A=2+2^2+2^3+...+2^{2003}-1-2-...-2^{2002}\\ \Rightarrow A=2^{2003}-1=B\)

24 tháng 10 2021

undefined

30 tháng 4 2015

B=2000/2001+2002 + 2001/2001+2002

Ta có:

2000/2001 > 2000/2001+2002

2001/2002 > 2001/2001+2002

Vậy A >B

30 tháng 4 2015

\(B=\frac{2000}{2001}+2002+\frac{2001}{2001}+2002\)
Ta có: \(\frac{2000}{2001}>\frac{2000}{2001}+2002\)
\(\frac{2001}{2002}>\frac{2001}{2001}+2002\)
Vậy A>B

11 tháng 4 2016

kl của bạn sai nhưng mình vẫn tìm ra :

A>B

đề lạ zậy ko so sánh mà bảo so sánh!!!!!!! chả hỉu *_*!

765885