BÀI TẬP:so sánh
a. A=\(\frac{5^{17}+1}{5^{19}+2}\) ; B=\(\frac{5^{20}+1}{5^{22}+1}\)
b.A=\(\frac{10^{14}+1}{10^{15}+1}\); B=\(\frac{10^{15}+1}{10^{16}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(2\sqrt{3}=\sqrt{4\cdot3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{9\cdot2}=\sqrt{18}\)
mà \(\sqrt{12}< \sqrt{18}\)(vì 12<18)
nên \(2\sqrt{3}< 3\sqrt{2}\)
b) Ta có: \(\left(2\sqrt{3}+1\right)^2=8+4\sqrt{3}+1=9+4\sqrt{3}\)
\(4^2=16=9+7\)
mà \(4\sqrt{3}< 7\left(\sqrt{48}< \sqrt{49}\right)\)
nên \(\left(2\sqrt{3}+1\right)^2< 4^2\)
hay \(2\sqrt{3}+1< 4\)
c) Ta có: \(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)
\(\sqrt{2014}-\sqrt{2013}=\dfrac{1}{\sqrt{2014}+\sqrt{2013}}\)
Ta có: \(\sqrt{2015}+\sqrt{2014}>\sqrt{2013}+\sqrt{2014}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2015}+\sqrt{2014}}< \dfrac{1}{\sqrt{2013}+\sqrt{2014}}\)
hay \(\sqrt{2015}-\sqrt{2014}< \sqrt{2014}-\sqrt{2013}\)
A=(17^18+1)/(17^19+1)
17A=17(17^18+1)/17^19+1=17^19+17/17^19+1
17A=(17^19+1)+16/(17^19+1)=1+16/17^19+1
B=(17^17+1)/(17^18+1)
17B=17(17^17+1)/17^18+1=17^18+17/17^18+1
17B=(17^18+1)+16/(17^18+1)=1+16/17^18+1
Từ (1) và (2)⇒1+16/17^19+1<1+16/17^18+1
=> 17A<17B
Hay A<B
Vậy A<B
a: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà 17^19+1>17^18+1
nên A<B
b: \(2C=\dfrac{2^{2021}-2}{2^{2021}-1}=1-\dfrac{1}{2^{2021}-1}\)
\(2D=\dfrac{2^{2022}-2}{2^{2022}-1}=1-\dfrac{1}{2^{2022}-1}\)
2^2021-1<2^2022-1
=>1/2^2021-1>1/2^2022-1
=>-1/2^2021-1<-1/2^2022-1
=>C<D
A = \(-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{7}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
A = \(-1\frac{1}{5}.\)4 : \(\frac{4.\left(1-\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}{5.\left(1-\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}\)
A = \(-1\frac{1}{5}.4\): \(\frac{4}{5}\)= \(\frac{-6}{5}\).4. \(\frac{5}{4}\)
A = \(\frac{-24}{5}.\frac{5}{4}\)=\(\frac{\left(-6\right).1}{1.1}\)= -6.
\(A=-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4+\frac{4}{17}+\frac{4}{19}+\frac{4}{2003}}{5+\frac{5}{17}+\frac{5}{19}+\frac{5}{2003}}\)
\(=-1\frac{1}{5}.\frac{4\left(3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}\right)}{3+\frac{1}{3}-\frac{3}{37}-\frac{3}{53}}:\frac{4\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}{5\left(1+\frac{1}{17}+\frac{1}{19}+\frac{1}{2003}\right)}\)
\(=-1\frac{1}{5}.\frac{4}{1}:\frac{4}{5}\)
\(=-1\frac{1}{5}.\frac{4}{1}.\frac{5}{4}\)
\(=-1\)
\(\frac{\frac{4}{17}+\frac{4}{19}-\frac{4}{2111}}{\frac{5}{17}+\frac{5}{19}-\frac{5}{2111}}-\frac{\frac{1}{123}-\frac{1}{19}+\frac{1}{371}-\frac{1}{5}}{-\frac{5}{123}+\frac{5}{19}-\frac{5}{371}+1}\)
\(=\frac{4.\left(\frac{1}{17}+\frac{1}{19}-\frac{1}{2111}\right)}{5.\left(\frac{1}{17}+\frac{1}{19}-\frac{1}{2111}\right)}+\frac{\frac{1}{123}-\frac{1}{19}+\frac{1}{371}-\frac{1}{5}}{5.\left(\frac{1}{123}-\frac{1}{19}+\frac{1}{371}-\frac{1}{5}\right)}=\frac{4}{5}+\frac{1}{5}=1\)
Cho tam giác ABC có đường cao AD .Gọi E là trung điểm của AB .F đối xứng vs D qua E c/m AB = DF
1:
a: Vì \(\dfrac{-4}{3}=\dfrac{-4\cdot3}{3\cdot3}=\dfrac{-12}{9}=\dfrac{12}{9}\\ \Rightarrow\dfrac{-4}{3}=\dfrac{12}{9}\)
b: Vì : \(-2\cdot3=-6\\ -6\cdot8=-48\)
nên 2 p/s ko bằng nhau
nói chuyện với mk đi
nói làm j