K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

Xét tam giác ABC vuông tại A có:

Đáp án cần chọn là: B

15 tháng 6 2019

A B C I E H M

Số tự thêm ha

a/ Xét tam giác ABC, áp dụng Định lí Pitago đảo:

\(AB^2+AC^2\)

\(=9^2+12^2=225=15^2=BC^2\)

=> Tam giác ABC vuông

b/ Xét tam giác ABCvuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)(định lí 4)

\(\frac{1}{AH^2}=\frac{1}{9^2}+\frac{1}{12^2}=\frac{25}{1296}\)

\(\Rightarrow AH^2=\frac{1296}{25}\Rightarrow AH=7,2\)(cm)

Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AB^2=BH\cdot BC\)(đinh lí 1)

\(9^2=BH\cdot15\)

\(\Rightarrow BH=5,4\)(cm)

c/ Xét tam giác ABH vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AH^2=AE\cdot AB\)(định lí 1) [1]

Xét tam giác AHC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AH^2=AI\cdot IC\)(đinh lí 1) [2]

Từ [1], [2] \(\Rightarrow AE\cdot AB=AI\cdot AC\)(đpcm)

d/ Gọi M là đường trung tuyến tam giác ABC

\(\Rightarrow BM=MC=\frac{BC}{2}=AM\)

Xét tam giác ABC vuông, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:

\(AH^2=BH\cdot HC\)(định lí 2)

\(\Rightarrow\sqrt{BH\cdot HC}=\sqrt{AH^2}=AH\)

Mà \(AH\le AM\)(  AH = AM với trường hợp AH trùng AM )

\(\Rightarrow\sqrt{HB\cdot HC}\le\frac{BC}{2}\)(đpcm)

p/s Hình hơi xấu nhé, thông cảm >:

16 tháng 6 2019

Ahwi:

Bài d nếu thay số vào thì có được không bạn? do mik thấy các cạnh trên đều tìm được??

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(BK=\sqrt{AB^2-AH^2}=9\left(cm\right)\)

CK=BC-BK=16(cm)

29 tháng 2 2016

điện tích tam giác ABC là 2916

 

29 tháng 2 2016

diện tích hình tam giác là:

          9x12:2=54(cm2)

14 tháng 3 2022

A B C D E F

a)Xét  \(\Delta ABC\) vuông tại A có :

    \(BC^2=AB^2+AC^2\) (định lý pytago)

    \(225=AB^2+144\)

\(\Rightarrow AB^2=225-144\)

     \(AB^2=81\)

     AB = 9cm

b)Xét \(\Delta ABD\) vuông tại A và \(\Delta EBD\) vuông tại E có :

   \(\widehat{ABD}=\widehat{EBD}\)

   BD chung

=>\(\Delta ABD\) =\(\Delta EBD\) (ch-gn)

=>\(\widehat{ADB}=\widehat{EDB}\)

=> DB là tia phân giác của \(\widehat{ADE}\)

c)M mình ko biết ở đâu nên mình ko làm nhé

Vì EF // BD nên \(\widehat{CFE}=\widehat{CDB}\)

Có : \(\widehat{CFE}+\widehat{EFD}=180^o\)

        \(\widehat{CDB}+\widehat{BDA}=180^o\)

mà \(\widehat{CFE}=\widehat{CDB}\)

=> \(\widehat{EFD}=\widehat{BDA}\)

mà \(\widehat{BDA}=\widehat{BDE}=\widehat{DEF}\)

=> \(\widehat{EFD}=\widehat{DEF}\) => \(\Delta DEF\) cân tại D

d) Có : \(AB=BE\) (\(\Delta ABD\) =\(\Delta EBD\))

=> \(\Delta ABE\) cân tại B

mà BD là đường phân giác của góc B 

=> BD là đường trung trực của AE