Cho đa thức A(x)=4x^3-5x^2+7-6 ; B(x)=8x^2+12x+4 ; Q(x)=A(x)-B(x)
a, Hãy chỉ ra 1 nghiệm của A(x) và 1 nghiệm của B(x)
b, Tìm bậc của Q(x) và hệ số tự do của nó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(x)=4x4−6x2−7x3−5x−6
B(x)=−5x2+7x3+5x+4−4x4
a/ - Tính:
M(x)=A(x)+B(x)
M(x)=4x4+6x2−7x3−5x−6−5x2+7x3+5x+4−4x4
M(x)=x2−2
- Tìm nghiệm:
M(x)=x2−2=0⇔x2=2⇔x=−√2;x=√2
b/ C(x)+B(x)=A(x)⇒C(x)=A(x)−B(x)
C(x)=4x4−6x2−7x3−5x−6−(−5x2+7x3+5x+4−4x4)
C(x)=4x4−6x2−7x3−5x−6+5x2−7x3−5x−4+4x4
C(x)=8x4−14x3−x2−10x−10
cho đa thức : A(x)=4x^4+6x^2-7x^3-5x-6 và B(x)=-5x^2+x^3+5x+4-4x^4
a)Tính M(x)=A(x)+B(x) rồi tính nghiệm của đa thức M(x)
b)tìm đa thức C(x)sao cho C(x)|+B(x)=A(x)
\(Câu\text{ }4:\\ Ta\text{ }có:\text{(x^2 – 3x + 2) + (4x^3– x^2+ x – 1)}\\ =x^2-3x+2+4x^3-x^2+x-1\\ =\text{4x}^3+\left(x^2-x^2\right)+\left(-3x+x\right)+\left(2-1\right)\\ =4x^3-2x+1\)
\(Câu\text{ }5:Đặt\text{ }tính\text{ }trừ\text{ }như\text{ }sau:\)
-x^3 -5x + 2 _ 3x + 8 x^3 -8x - 6
\(A=4x^2-5x^3+3x-2x^2-7+x\\ =2x^2-5x^3+4x-7\)
Vậy bậc của đa thức A là 3
\(B=6x^2-5x^3-2x-4x^2-7+x\\ =2x^2-5x^3-x-7\)
Vậc bậc của đa thức B là 3
a)f(x)+g(x)=\(x^5-4x^4-2x^2-7-2x^5+6x^4-2x^2+6.\)
=\(-x^5+2x^4-4x^2-1\)
f(x)-g(x)=\(x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
=\(3x^5-10x^4-13\)
b)f(x)+g(x)=\(5x^4+7x^3-6x^2+3x-7-4x^4+2x^3-5x^2+4x+5\)
=\(x^4+9x^3-11x^2+7x-2\)
f(x)-g(x)=\(5x^4+7x^3-6x^2+3x-7+4x^4-2x^3+5x^2-4x-5\)
=\(9x^4+5x^3-x^2-x-12\)
a )
\(f\left(x\right)+g\left(x\right)=x^5-4x^4-2x^2-7+-2x^5+6x^4-2x^2+6\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=\left(x^5-2x^5\right)+\left(6x^4-4x^4\right)-\left(2x^2+2x^2\right)+\left(6-7\right)\)
\(\Rightarrow f\left(x\right)+g\left(x\right)=-x^5+2x^4-4x^2-1\)
\(f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7-\left(-2x^5+6x^4-2x^2+6\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=x^5-4x^4-2x^2-7+2x^5-6x^4+2x^2-6\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=\left(x^5+2x^5\right)-\left(4x^4+6x^4\right)+\left(2x^2-2x^2\right)-\left(6+7\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=3x^5-10x^4-13\)
a: f(x)=-2x^7+4x^3-2x^2+3
g(x)=-5x^7-2x^3+x
b: f(x)+g(x)
=-2x^7+4x^3-2x^2+3-5x^7-2x^3+x
=-7x^7+2x^3-2x^2+x+3
f(x)-g(x)
=-2x^7+4x^3-2x^2+3+5x^7+2x^3-x
=3x^7+6x^3-2x^2-x+3
c: f(0)=0+0+0+3=3
=>x=0 ko là nghiệm của f(x)
g(0)=0+0+0=0
=>x=0 là nghiệm của g(x)
B(3)=2*3^2-4*3+3=18-12+3=9
B(-1/2)=2*1/4-4*(-1/2)+3=1/2+3+2=1/2+5=11/2
Thôi dc rồi mình làm theo ý mình nhé.
\(A\left(x\right)=4x^4-6x^2-7x^3-5x-6\)
\(B\left(x\right)=-5x^2+7x^3+5x+4-4x^4\)
Bài này không yêu cầu sắp xếp nên thôi tính luôn. Mình chỉ sắp xếp lại KQ thôi
a/ - Tính:
\(M\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(M\left(x\right)=4x^4+6x^2-7x^3-5x-6-5x^2+7x^3+5x+4-4x^4\)
\(M\left(x\right)=x^2-2\)
- Tìm nghiệm:
\(M\left(x\right)=x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow x=-\sqrt{2};x=\sqrt{2}\)
b/ \(C\left(x\right)+B\left(x\right)=A\left(x\right)\Rightarrow C\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(C\left(x\right)=4x^4-6x^2-7x^3-5x-6-\left(-5x^2+7x^3+5x+4-4x^4\right)\)
\(C\left(x\right)=4x^4-6x^2-7x^3-5x-6+5x^2-7x^3-5x-4+4x^4\)
\(C\left(x\right)=8x^4-14x^3-x^2-10x-10\)
a) \(M(x) = A(x) + B(x) \\= 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4} \\=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)\\= {x^2} - 2.\)
b) \(A(x) = B(x) + C(x) \Rightarrow C(x) = A(x) - B(x)\)
\(\begin{array}{l}C(x) = A(x) - B(x)\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - ( - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4})\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 + 5{x^2} - 7{x^3} - 5x - 4 + 4{x^4}\\ =(4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)\\= 8{x^4} - 14{x^3} + 11{x^2} - 10x - 10\end{array}\)