K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2016

Lê Xuân Trường

1-Xét tam giác ABH và tam giác ACH có

Góc AHB = Góc AHC = 90 độ

AC = AB (Do tam giác ABC cân tại A)

Góc ABH = Góc ACH(Do tam giác ABC cân tại A)

Suy ra tam giác ABH = tam giác ACH (cạnh huyền -góc nhọn )

Suy ra BH = CH =3 cm (2 cạnh tương ứng )

2 . Tui không biết làm thông cảm nhe !

 

 

2 tháng 4 2016

b1 3 tia phân giác trong gặp nhau tại 1 điểm 

boc=125

b2 vì om là tia phân giác nên IE =IF nên tam giác 0ie =oif( cgv ch )

gọi giao điểm của è và om tại h chứng minh tam giác hoe=hò tương tự như câu a

13 tháng 5 2016

khó quá @_@ !!!!!   ?_? 

13 tháng 8 2023

a) Ta có: \(cos\alpha=\dfrac{12}{13}\)

Mà: \(sin^2\alpha+cos^2a=1\)

\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)

\(\Rightarrow sin^2\alpha=1-\left(\dfrac{12}{13}\right)^2\)

\(\Rightarrow sin^2\alpha=\dfrac{25}{169}\)

\(\Rightarrow sin\alpha=\sqrt{\dfrac{25}{169}}\)

\(\Rightarrow sin\alpha=\dfrac{5}{13}\)

Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{5}{13}}{\dfrac{12}{13}}=\dfrac{5}{12}\)

b) Ta có: \(cos\alpha=\dfrac{3}{5}\)

Mà: \(sin^2\alpha+cos^2\alpha=1\)

\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)

\(\Rightarrow sin^2\alpha=1-\left(\dfrac{3}{5}\right)^2\)

\(\Rightarrow sin^2\alpha=\dfrac{16}{25}\)

\(\Rightarrow sin\alpha=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5}\)

Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}=\dfrac{4}{3}\)

2:

a: BC=căn 16^2+12^2=20cm

Xét ΔABC vuông tại A có

sin B=cos C=AC/BC=3/5

cos B=sin C=AB/BC=4/5

tan B=cot C=3/5:4/5=3/4

cot B=tan C=1:3/4=4/3

b: AH=căn 13^2-5^2=12cm

Xét ΔAHC vuông tại H có

sin C=AH/AC=12/13

=>cos B=12/13

cos C=HC/AC=5/13

=>sin B=5/13

tan C=12/13:5/13=12/5

=>cot B=12/5

tan B=cot C=1:12/5=5/12

c: BC=3+4=7cm

AB=căn BH*BC=2*căn 7(cm)

AC=căn CH*BC=căn 21(cm)

Xét ΔABC vuông tại A có

sin B=cos C=AC/BC=căn 21/7

sin C=cos B=AB/BC=2/căn 7

tan B=cot C=căn 21/7:2/căn 7=1/2*căn 21

cot B=tan C=1/căn 21/2=2/căn 21

Bài 1Cho tam giác ABC có ba góc nhọn, gọi M là trung điểm của BC . Trên nửa mặt phẳng chứa điểm C bờ là đường thẳng AB vẽ đoạn thẳng AE vuông góc với AB sao cho AE= AB  . Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC vẽ đoạn thẳng AD vuông góc với AC sao cho AD = AC.        a) Chứng minh: BD = CE .        b) Trên tia đối của tia MA lấy N sao cho MN = MA . Chứng minh: tam giác ADE = tam giác CAN .        c) Gọi...
Đọc tiếp

Bài 1Cho tam giác ABC có ba góc nhọn, gọi M là trung điểm của BC . Trên nửa mặt phẳng chứa điểm C bờ là đường thẳng AB vẽ đoạn thẳng AE vuông góc với AB sao cho AE= AB  . Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC vẽ đoạn thẳng AD vuông góc với AC sao cho AD = AC.

        a) Chứng minh: BD = CE .

        b) Trên tia đối của tia MA lấy N sao cho MN = MA . Chứng minh: tam giác ADE = tam giác CAN .

        c) Gọi I là giao điểm của DE và AM . Chứng minh: AD^2 + IE^2/ DI^2+ AE^2 = 1.

Bài 2 Cho tam giác ABC vuông cân tại A . Gọi M là trung điểm của BC , điểm thuộc đoạn BM (D khác B và M ). Kẻ các đường thẳng BH, CI lần lượt vuông với đường thẳng AD tại H và I .                 

Chứng minh rằng:

a. BH = AI .

b.Góc BAM = góc ACM

c. Tam giác  vuông cân

có vẽ hình. Em cần gấp ạ

0
21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

6 tháng 6 2019

A B C D O 1 2 3 4

Có : \(AB< OA+OB;BC< OB+OC;CD< OC+OD;DA< OD+OA\)

\(P_{ABCD}=2p=AB+BC+CD+DA< 2\left(OA+OB+OC+OD\right)\)

\(\Leftrightarrow\)\(p< OA+OB+OC+OD\)

Lại có : \(OA< AB-OB;OB< BC-OC;OC< CD-OD;OD< DA-OA\)

Cộng vế theo vế từng bđt trên ta được : 

\(OA+OB+OC+OD< AB+BC+CD+DA-\left(OA+OB+OC+OD\right)\)

\(\Leftrightarrow\)\(2\left(OA+OB+OC+OD\right)< AB+BC+CD+DA\) (*) 

Có tiếp -,- : 

\(OA< AB+OB;OA< DA+OD\)\(\Rightarrow\)\(2OA< AB+DA+OB+OD\)

\(OB< AB+OA;OB< BC+OC\)\(\Rightarrow\)\(2OB< AB+BC+OA+OC\)

\(OC< BC+OB;OC< CD+OD\)\(\Rightarrow\)\(2OC< BC+CD+OB+OD\)

\(OD< CD+OC;OD< DA+OA\)\(\Rightarrow\)\(2OD< CD+DA+OC+OA\)

\(\Rightarrow\)\(2\left(OA+OB+OC+OD\right)< 2\left(AB+BC+CD+DA\right)+2\left(OA+OB+OC+OD\right)\)

\(< 2\left(AB+BC+CD+DA\right)+\left(AB+BC+CD+DA\right)\) ( kết hợp với (*) ) 

\(\Rightarrow\)\(2\left(OA+OB+OC+OD\right)< 3\left(AB+BC+CD+DA\right)\)

\(\Leftrightarrow\)\(OA+OB+OC+OD< 3.\frac{AB+BC+CD+DA}{2}=3.\frac{2p}{2}=3p\)

Vậy \(p< OA+OB+OC+OD< 3p\)