K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

HS tự làm

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

NM
19 tháng 2 2022

a. ta có : tam giác AHB vuông tại H nên

\(AH^2=AB^2-BH^2=12^2-7,2^2=9,6^2\) Vậy AH =9,6cm

b. Ta có : ABC phải tam giác vuông vì \(AB^2=BH.BC\)

Sửa đề: AD là đường phân giác

a) Sửa đề: Chứng minh AD vuông góc với BC

Ta có: ΔABC cân tại A(Gt)

mà AD là đường phân giác ứng với cạnh đáy BC(gt)

nên AD là đường cao ứng với cạnh BC(Định lí tam giác cân)

hay AD\(\perp\)BC(Đpcm)

b) Ta có: ΔABC cân tại A(Gt)

mà AD là đường cao ứng với cạnh đáy BC(Cmt)

nên AD là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)

\(\Leftrightarrow\)D là trung điểm của BC

hay \(BD=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:

\(AB^2=AD^2+BD^2\)

\(\Leftrightarrow AD^2=AB^2-BD^2=10^2-6^2=64\)

hay AD=8(cm)

Vậy: AD=8cm

2 tháng 10 2020

P/s : bổ sung đề : Thêm đường cao AH ( H thuộc BC )

Giải :

A B C H

+) Áp dụng định lí pi - ta - go vào tam giác ABC vuông tại A , ta có :

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2\)

\(\Leftrightarrow AC=\sqrt{20^2-12^2}=16\left(cm\right)\)

+) Áp dụng hệ thức giữa cạnh và đường cao trong tam giác ABC vuông tại A , đường cao AH , ta có :

+) \(AB^2=BC.HB\)

\(\Leftrightarrow12^2=20HB\)

\(\Leftrightarrow HB=7,2\left(cm\right)\)

\(\Rightarrow HC=BC-HB=20-7,2=12,8\left(cm\right)\)

+) \(AH^2=HB.HC\)

\(\Leftrightarrow AH^2=7,2.12,8\)

\(\Leftrightarrow AH^2=92,16\)

\(\Leftrightarrow AH=9,6\left(cm\right)\)

14 tháng 2 2022

giúp mk vs đang cần gấp :((

 

14 tháng 2 2022

uk

14 tháng 7 2021

tam giác ABC vuông tại A nên áp dụng định lý Py-ta-go

\(\Rightarrow AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=13^2-12^2=25\)

\(\Rightarrow AC=5\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow12^2=BH.13\Rightarrow BH=\dfrac{12^2}{13}=\dfrac{144}{13}\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CH.BC\Rightarrow5^2=BH.13\Rightarrow BH=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\)

14 tháng 7 2021

Ta có: \(AC=\sqrt{BC^2-AC^2}=\sqrt{13^2-12^2}=5\left(cm\right)\)

Ta có: \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)

Ta có: \(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{13}=\dfrac{144}{13}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\)