K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

Cho đường thẳng: (d): y = (2m – 1)x + m – 2.

1) Tìm m để đường thẳng (d):

a.  Đi qua điểm A(1; 6).    

Thay x=1 , y=6 vào đừng thẳng (d),ta được:

    (2m-1).1+m-2=6

<=>2m-1+m-2=6

<=>3m=9

<=>m=3

b.  Song song với đường thẳng 2x + 3y – 5 = 0.

Ta có : 2x + 3y -5 =0

<=>3y=-2x+5

<=>y=\(\frac{-2}{3}\)x+\(\frac{5}{3}\)

Để (d) // y=\(\frac{-2}{3}\)x+\(\frac{5}{3}\)Thì ;

\(\hept{\begin{cases}2m-1=\frac{-2}{3}\\m-2\ne\frac{5}{3}\end{cases}}\)<=>\(\hept{\begin{cases}2m=\frac{1}{3}\\m\ne\frac{5}{3}+2\end{cases}}\)<=>\(\hept{\begin{cases}m=\frac{1}{6}\\m\ne\frac{11}{3}\end{cases}}\)<=>m=\(\frac{1}{6}\)

c.  Vuông góc với đường thẳng x + 2y + 1 = 0.  

Ta có :  x + 2y +1 =0

<=>2y=-x-1

<=>y=\(\frac{-1}{2}\)x + \(\frac{-1}{2}\)

Để (d) Vuông góc với y=\(\frac{-1}{2}\)x + \(\frac{-1}{2}\)thì:

(2m-1).\(\frac{-1}{2}\)=-1

<=>2m-1=2

<=>2m=3

<=>m=\(\frac{3}{2}\)

2) Tìm điểm cố định mà (d) luôn đi qua với mọi m.

17 tháng 12 2021

2) Tìm điểm cố định mà (d) luôn đi qua với mọi m.

Gọi M(x0; y0) là điểm cố định mà đường thẳng (d) luôn đi qua. Khi đó ta có:

⇔ y0 = (2m - 1)x0 + m -2 với mọi m

⇔ y0 = 2mx0 - x0 + m -2 với mọi m

⇔ y0 - 2mx0 + x0 - m +2 = 0 với mọi m

⇔ m(-2x0 - 1) + (y0 + x\(_0\)+2) = 0 với mọi m

<=>\(\hept{\begin{cases}-2x_0-1=0\\y_0+x_0+2=0\end{cases}}\)<=>\(\hept{\begin{cases}x_0=\frac{-1}{2}\\y_0=0-2+\frac{-1}{2}\end{cases}}\)<=>\(\hept{\begin{cases}x_0=\frac{-1}{2}\\y_0=\frac{-5}{2}\end{cases}}\)

Vậy điểm cố định mà (d) luôn đi qua là M(\(\frac{-1}{2}\);\(\frac{-5}{2}\))

17 tháng 12 2021

1.

\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)

Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)

\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)

2.

Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)

18 tháng 12 2021

mình cảm ơn bạn nhiều nha 

24 tháng 12 2021

\(a,\Leftrightarrow A\left(0;0\right)\in\left(d\right)\Leftrightarrow-2m+1=0\Leftrightarrow m=\dfrac{1}{2}\\ b,\Leftrightarrow x=3;y=4\Leftrightarrow3\left(m+1\right)-2m+1=4\\ \Leftrightarrow3m+3-2m+1=4\\ \Leftrightarrow m=0\Leftrightarrow\left(d\right):y=x+1\\ c,\text{PT hoành độ giao điểm: }x+1=-2x+4\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow B\left(1;2\right)\\ \text{Vậy }B\left(1;2\right)\text{ là giao 2 đths}\)

21 tháng 10 2021

b: Để (d)//(d') thì m+3=4

hay m=1

23 tháng 12 2023

a: Thay x=2 và y=-3 vào (d), ta được:

\(2\left(2m-1\right)-2m+5=-3\)

=>\(4m-2-2m+5=-3\)

=>2m+3=-3

=>2m=-6

=>\(m=-\dfrac{6}{2}=-3\)

b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)

=>m=3/2

Thay m=3/2 vào (d), ta được:

\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)

loading...

y=2x+2 nên a=2

Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox

\(tan\alpha=2\)

=>\(\alpha\simeq63^026'\)

8 tháng 4 2020

a) Để đường thẳng (d) đi qua gốc tọa độ thì m + 1 = 0 => m = 1

Vậy m=1 thì đường thẳng (d) đi qua gốc tọa độ 

b) Thay x = 3; y = 4 vào đường thẳng (d) ta được:

4 = (m + 1).3 - 2m + 1

<=> 3m + 3 -2m +1 - 4 = 0

<=> m = 0

Vậy m = 0 thì đường thẳng (d) đi qua điểm A(3;4)

Sorry vì mik ko vẽ được đồ thị cho bạn 

c) Đường thẳng vừa vẽ được: y = x + 1 

Phương trình hoành độ giao điểm của đường thẳng y = x + 1 và đường thẳng y = -2x + 4 là:

x + 1 = -2x + 4

<=> x + 2x = 4 - 1 

<=> 3x = 3 

<=> x = 1

Tung độ của 2 đường thẳng y = x + 1 và đường thẳng y = -2x + 4 là:

y = 1 + 1 

<=> y = 2

Vậy tọa độ giao điểm của đường thẳng y = x + 1 và đường thẳng y = -2x + 4 là (1;2)

Học tốt. Nhớ k cho mik nha.

Lời giải:

P/s: Làm nhưng k biết có đúng hay không!!! (^-^)

Gọi giao điểm mà đồ thị hàm số (y) cắt trục tung là A

Theo bài ra ta có hoành độ của A là 1

Vì A nằm trên trục tung nên hoành độ của A là 0

Do đó điểm A = ( 0 ,  1 ) 

A thuộc đồ thị hàm số (y) nên: ⇒ (m+1)x -2m+1(d)\(\Rightarrow\)m = − 2

                                                   ~Học tốt!~

a: Thay x=1 và y=5 vào (d), ta được:

2m+2m-3=5

=>4m-3=5

hay m=2

b: Phương trình hoành độ giao điểm là:

\(x^2-2mx-2m+3=0\)

Để(P) tiếp xúc với (d) thì \(\left(-2m\right)^2-4\left(-2m+3\right)=0\)

\(\Leftrightarrow4m^2+8m-12=0\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)

=>m=-3 hoặc m=1

Cho ba đường thẳng d1: y = 2x + 8; d2: y = mx – 2m + 3; d3: y = x + 2.1. Tìm m để d2 đi qua điểm E(1 ; 3).2. Tìm m để d2 vuông góc với đường phân giác góc phần tư thứ hai.3. Tìm m để ba đường thẳng trên đồng quy.4. Tìm điểm cố định mà d2 luôn đi qua với mọi m. Từ đó tìm m để khoảng cách từ gốc O đến d2 là lớnnhất.5. Gọi d3 cắt 0x, 0y lần lượt tại A và B. Tìm A và B sau đó tính diện tích...
Đọc tiếp

Cho ba đường thẳng d1: y = 2x + 8; d2: y = mx – 2m + 3; d3: y = x + 2.
1. Tìm m để d2 đi qua điểm E(1 ; 3).
2. Tìm m để d2 vuông góc với đường phân giác góc phần tư thứ hai.
3. Tìm m để ba đường thẳng trên đồng quy.
4. Tìm điểm cố định mà d2 luôn đi qua với mọi m. Từ đó tìm m để khoảng cách từ gốc O đến d2 là lớn
nhất.
5. Gọi d3 cắt 0x, 0y lần lượt tại A và B. Tìm A và B sau đó tính diện tích tam giác OAB theo hệ thức
lượng.
6. Lập phương trình đường thẳng d đi qua điểm M(3 ; 8) và song song với d3, cắt hai trục tọa độ tại C và
D. Tính độ dài đường cao của tam giác COD, từ đó suy ra khoảng cách từ điểm M đến d3.
7. Lập phương trình đường thẳng d’ qua M và vuông góc với d3. Tìm hình chiếu N của M trên d3, từ đó
tính khoảng cách từ M đến d3

1

1:Thay x=1 và y=3 vào (d2), ta được:

\(m-2m+3=3\)

hay m=0

16 tháng 7 2021

a) (d) đi qua điểm \(M\left(-3;1\right)\Rightarrow1=\left(2m-1\right).\left(-3\right)-4m+5\)

\(\Rightarrow1=-6m+3-4m+5\Rightarrow1=-10m+8\Rightarrow10m=7\Rightarrow m=\dfrac{7}{10}\)

\(\Rightarrow y=\dfrac{2}{5}x+\dfrac{11}{5}\)

b) Gọi \(A\left(x_A;y_A\right)\) là điểm cố định mà (d) luôn đi qua

\(\Rightarrow y_A=\left(2m-1\right)x_A-4m+5\)

\(\Rightarrow2mx_A-x_A-4m+5-y_A=0\Rightarrow2m\left(x_A-2\right)-\left(x_A+y_A-5\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_A=2\\x_A+y_A-5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_A=2\\y_A=3\end{matrix}\right.\Rightarrow A\left(2;3\right)\)

\(\Rightarrow\) (d) luôn đi qua điểm \(A\left(2;3\right)\) cố định

a) Thay x=-3 và y=1 vào (d), ta được:

\(\left(2m-1\right)\cdot\left(-3\right)-4m+5=1\)

\(\Leftrightarrow-6m+3-4m+5=1\)

\(\Leftrightarrow-10m=-7\)

hay \(m=\dfrac{7}{10}\)