Tìm tập xác định của hàm số y = ln ( 1 - x )
A. D = ( - ∞ ; - 1 )
B. D = ( - 1 ; + ∞ )
C. D = ( - ∞ ; 1 )
D. D = ( 1 ; + ∞ )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,4^x-2^{x+1}\ge0\\ \Leftrightarrow2^{x+1}\le2^{2x}\\ \Leftrightarrow x+1\le2x\\ \Leftrightarrow x\ge1\)
Tập xác định của hàm số là D = \([1;+\infty)\)
\(b,\left\{{}\begin{matrix}x>0\\1-ln\left(x\right)>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x>0\\ln\left(x\right)< 1\end{matrix}\right.\\ \Leftrightarrow0< x< e\)
Tập xác định của hàm số là \(\left(0;e\right)\)
Chọn C
Điều kiện xác định:
Tập xác định của hàm số đã cho là D = ( - ∞ ; 1 )
Đáp án C
Phương pháp:
Hàm số y = logaf(x) (0 < a ≠ 1) xác định khi và chỉ khi ⇔ f(x) > 0
Cách giải: