K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Áp dụng định lý Thalès, ta có:

HE // BD \(\Rightarrow\frac{AH}{AD}=\frac{AE}{AB}\)(1)

EF // AC \(\Rightarrow\frac{AE}{AB}=\frac{FC}{BC}\)(2)

FG // BD \(\Rightarrow\frac{FC}{BC}=\frac{GC}{DC}\)(3)

Từ (1),(2),(3) suy ra \(\frac{AH}{AD}=\frac{GC}{DC}\Rightarrow AH.CD=AD.CG\left(đpcm\right)\)

a: Xét ΔFAE vuông tại F và ΔFGC vuông tại F có

góc FAE=góc FGC

=>ΔFAE đồng dạng với ΔFGC

=>FA/FG=FE/FC

=>FA*FC=FE*FG=FD^2

b: DE=căn 18^2+24^2=30cm

Xét ΔEAD vuông tại A và ΔEBG vuông tại B có

EA=EB

góc AED=góc BEG

=>ΔEAD=ΔEBG

=>AD=BG=24cm và EG=ED=30cm

DG=30+30=60cm

4 tháng 7 2023

cảm ơn :3yeu

4 tháng 7 2023

loading...    

4 tháng 7 2023

củm ơn ha nhìn đề mà mún xỉuoho

25 tháng 6 2018

22 tháng 10 2023

Bài 2:

AK=AB/2

CI=CD/2

mà AB=CD

nên AK=CI

Xét tứ giác AKCI có

AK//CI

AK=CI

Do đó: AKCI là hình bình hành

=>AC cắt KI tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,KI,BD đồng quy

Bài 1:

a: \(\widehat{ADE}=\widehat{EDF}=\dfrac{1}{2}\cdot\widehat{ADC}\)

\(\widehat{ABF}=\widehat{CBF}=\dfrac{1}{2}\cdot\widehat{ABC}\)

mà \(\widehat{ADC}=\widehat{ABC}\)

nên \(\widehat{ADE}=\widehat{EDF}=\widehat{ABF}=\widehat{CBF}\)

Xét ΔEAD và ΔFCB có

\(\widehat{A}=\widehat{C}\)

AD=CB

\(\widehat{EDA}=\widehat{FBC}\)

Do đó: ΔEAD=ΔFCB

=>\(\widehat{AED}=\widehat{CFB}\)

=>\(\widehat{EDF}=\widehat{CFB}\)

mà hai góc này đồng vị

nên DE//BF

b: Xét tứ giác DEBF có

DE//BF

BE//DF

Do đó: DEBF là hình bình hành