Cho biểu thức sau (với x ≥ 0 ; x ≠ 1 v à x ≠ 1 / 4 ).
Tìm giá trị của x để B < 0.
B = x x + x + x x x - 1 - x + 3 1 - x × x - 1 2 x + x - 1
A. 0 < x < 1 / 4
B. 0 ≤ x < 1 / 4
C. x > 1 / 4 x
D. x ≤ 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ta có: P = x 3 x 2 . x 1 2 3 5 = x 3 x 5 2 3 5 = x 3 x 5 6 5 = x 23 6 5 = x 23 30
( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)
a: \(=9-4\sqrt{5}\cdot\dfrac{1}{\sqrt{5}}=9-4=5\)
b: \(=\sqrt{5}-2-\dfrac{1}{2}\cdot2\sqrt{5}=-2\)
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
Bài 5:
\(x^3=18+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\\ \Leftrightarrow x^3=18+3x\sqrt[3]{1}\\ \Leftrightarrow x^3-3x=18\\ y^3=6+3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\\ \Leftrightarrow y^3=6+3y\sqrt[3]{1}\\ \Leftrightarrow y^3-3y=6\\ P=x^3+y^3-3\left(x+y\right)+1993\\ P=\left(x^3-3x\right)+\left(y^3-3y\right)+1993\\ P=18+6+1993=2017\)
\(Q=\dfrac{x^2+xy+y^2+300}{x+y}=\dfrac{\dfrac{1}{2}\left(x+y\right)^2+\dfrac{1}{2}\left(x^2+y^2\right)+300}{x+y}\)
\(Q\ge\dfrac{\dfrac{1}{2}\left(x+y\right)^2+\dfrac{1}{4}\left(x+y\right)^2+300}{x+y}=\dfrac{\dfrac{3}{4}\left(x+y\right)^2+300}{x+y}\)
\(Q\ge\dfrac{2\sqrt{\dfrac{3}{4}\left(x+y\right)^2.300}}{x+y}=30\)
\(Q_{min}=30\) khi \(x=y=10\)
cho em hỏi là
chỗ này \(\dfrac{1}{2}\left(x+y^{ }\right)^{2
}+\dfrac{1}{2}\left(x^2+y^2\right)+300\)
tại sao lại ra như vậy ạ
Chọn đáp án B.
Ta có: