giải phương trình : a) 3cos2015x + 4\(\sin\) 2016x = 7 ; b) sin2x + cos2x = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2014};-\dfrac{2}{2015};-\dfrac{3}{2016};-\dfrac{4}{2017}\right\}\)
Ta có: \(\dfrac{1}{2014x+1}-\dfrac{1}{2015x+2}=\dfrac{1}{2016x+3}-\dfrac{1}{2017x+4}\)
\(\Leftrightarrow\dfrac{2015x+2-2014x-1}{\left(2014x+1\right)\left(2015x+2\right)}=\dfrac{2017x+4-2016x-3}{\left(2016x+3\right)\left(2017x+4\right)}\)
\(\Leftrightarrow\dfrac{x+1}{\left(2014x+1\right)\left(2015x+2\right)}-\dfrac{x+1}{\left(2016x+3\right)\left(2017x+4\right)}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{\left(2014x+1\right)\left(2015x+2\right)}-\dfrac{1}{\left(2016x+3\right)\left(2017x+4\right)}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\\dfrac{1}{\left(2014x+1\right)\left(2015x+2\right)}=\dfrac{1}{\left(2016x+3\right)\left(2017x+4\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\4058210x^2+6043x+2=4066272x^2+14115x+12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\8062x^2+8072x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\8062x^2+8062x+10x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\8062x\left(x+1\right)+10\left(x+1\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(x+1\right)\left(8062x+10\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+1=0\\8062x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-1\\8062x=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(nhận\right)\\x=\dfrac{-5}{4031}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{-5}{4031}\right\}\)
\(2016x^{2017}+2017y^{2016}=2015\left(1\right)\)
Có 2016x2017 là số chẵn, 2015 là số lẻ
=> 2017y2016 là số lẻ => y2016 là số lẻ
Đặt y1008 = 2k+1 \(\left(k\in Z\right)\)
Có y2016 = (2k+1)2 = 4k2+4k+1
=> 2017y2016 = 2017 (4k2+4k+1) = 2017.4.(k2+k)+2017
Lại có: \(2017.4.\left(k^2+k\right)\equiv0\left(mod4\right)\)
\(2017\equiv1\left(mod4\right)\)
suy ra: \(2017y^{2016}\equiv1\left(mod4\right)\)
mà \(2016x^{2017}\equiv0\left(mod4\right)\)
\(\Rightarrow2016x^{2017}+2017y^{2016}\equiv1\left(mod4\right)\left(2\right)\)
Lại có: \(2015\equiv3\left(mod4\right)\left(3\right)\)
Từ (1), (2) và (3) => PT vô nghiệm