Cho A = \(\frac{3n^2+3n}{12n}\) ; B = \(\frac{6n+1}{12n}\)
Với n \(\in\) N*
Hỏi A,B là số thập phân hữu hạn hay số thập phân vô hạn tuần hoàn ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{3n^2+3n}{12n}=\dfrac{3n\left(n+1\right)}{12n}=\dfrac{n+1}{4}\)
=>viết được dưới dạng số thập phân hữu hạn
b: 6n+1/12n là phân số tối giản nên phân số này viết được dưới dạng số thập phân vô hạn tuần hoàn
Hướng dẫn: Đặt (tử, mẫu)=d
Phương pháp: Tìm được d = 1.
Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n.
Cuối cùng sẽ tìm được 1 là bội của b => d=1
Còn lại cậu tự làm nhé!
Lời giải:
$12n-3\vdots 3n-2$
$\Rightarrow 4(3n-2)+5\vdots 3n-2$
$\Rightarrow 5\vdots 3n-2$
$\Rightarrow 3n-2\in\left\{1; -1;5;-5\right\}$
$\Rightarrow n\in\left\{1; \frac{1}{3}; \frac{7}{3}; -1\right\}$
Vì $n\in\mathbb{N}$ nên $n=1$
Ta có:
12n - 3 = 12n - 8 + 5 = 4(3n - 2) + 5
Để (12n - 3) ⋮ (3n - 2) thì 5 ⋮ (3n - 2)
⇒ 3n - 2 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ 3n ∈ {-3; 1; 3; 7}
⇒ n ∈ {-1; 1/3; 1; 7/3}
Mà n ∈ ℕ
⇒ n = 1
Giải
Hiệu số tuổi bố và con không bao giờ thay đổi.
Hiện nay tuổi con bằng 1/6 tuổi bố. Vậy tuổi bố bằng:
6/6-1 = 6/5 (hiệu )
Sau 4 năm thì tuổi bố bằng:
4/4-1 = 4/3 ( hiệu )
4 năm thì bằng:
4/3 – 6/5 = 2/15 ( hiệu )
Hiệu của tuổi hai bố con là:
4 : 2/15 = 30 ( tuổi )
Tuổi con hiện nay là:
30 : ( 6 - 1 ) = 6 ( tuổi )
Tuổi bố hiện nay là:
6 x 6 = 36 ( tuổi )
Đáp số:
Con: 6 tuổi
Bố: 36 tuổi
a, \(\frac{3n}{3n+1}\)
Vì 3n + 1 hơn 3n 1 đơn vị, n \(\in\) Z
\(\Rightarrow\) ƯCLN ( 3n; 3n + 1 ) = 1
\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản
Vậy \(\frac{3n}{3n+1}\) là phân số tối giản ( đpcm )
b, \(\frac{4n+1}{6n+1}=\frac{24n+6}{24n+4}\)
Đề bài sai
Các câu c,d,e,g,h tương tự
Các phân số đó tối giản khi UWCLN của tử và mẫu của nó bằng 1
Vậy bạn hãy chứng minh UWCLN(tử,mẫu)=1
gọi d là UCLN(12n+1;3n+2)
<=>4(3n+2)-12n+1 chia hết d
=>12n+2-12n+1 chia hết d
=>1 chia hết d
=>d=1
=>\(\frac{12n+1}{3n+2}\) là phân số tối giản
Gọi A là ƯCLN(12n+1/3n+2)
=>12n+1 chia hết cho A
3n+2 chia hết cho A
=>A thuộc ƯC(2,1)={1;-1}
=>A={1;-1}
Vậy 12n+1/3n+2 là phân số tối giản
Gợi ý thôi chứ giải ra dài lắm !!
\(\frac{a}{b}\) tối giản khi và chỉ khi UCLN(a;b)=1
hjjfu
Ta có:A;B là số thập phân vô han tuan hoan