K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\overrightarrow{MA}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)=\overrightarrow{0}\)

=>vecto MA=0 hoặc M là trọng tâm của ΔABC

=>M là trọng tâm của ΔABC hoặc M trùng với A

20 tháng 9 2023

\(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MA}-\overrightarrow{MC}=-\overrightarrow{MB}\Leftrightarrow\overrightarrow{CA}=\overrightarrow{BM}\)

Vậy M là điểm sao cho tứ giác ACBM là hình bình hành.

17 tháng 5 2017

\(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{MC}=\overrightarrow{BA}+\overrightarrow{MC}\).
Suy ra: \(\overrightarrow{BA}+\overrightarrow{MC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{MC}=\overrightarrow{AB}\)
Vậy điểm M được xác định sao cho \(\overrightarrow{MC}=\overrightarrow{AB}\).
A B C M

25 tháng 12 2020

1.

Gọi G là trọng tâm tam giác

\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{OG}=\overrightarrow{0}\)

\(\Leftrightarrow O\equiv G\)

\(\Rightarrow O\) là trọng tâm tam giác ABC

\(\Rightarrow\Delta ABC\) đều

Gọi độ dài các cạnh tam giác là a

\(\overrightarrow{BN}.\overrightarrow{AM}=\dfrac{1}{4}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=-\dfrac{1}{4}a^2-\dfrac{1}{8}a^2-\dfrac{1}{8}a^2+\dfrac{1}{2}a^2=0\)

Mặt khác \(\overrightarrow{BN}.\overrightarrow{AM}=BN.AM.cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)\)

\(\Rightarrow BN.AM.cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)=0\Rightarrow cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)=0\Rightarrow\left(\overrightarrow{AM};\overrightarrow{BN}\right)=90^o\)

25 tháng 12 2020

\(BD=\dfrac{AB}{cos45^o}=\dfrac{a}{\dfrac{\sqrt{2}}{2}}=a\sqrt{2}\)

\(\overrightarrow{BQ}.\overrightarrow{BP}=\dfrac{1}{4}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\left(\overrightarrow{BC}+\overrightarrow{BD}\right)\)

\(=\dfrac{1}{4}BA.BC.cos90^o+\dfrac{1}{4}BA.BD.cos45^o+\dfrac{1}{4}BD.BC.cos45^o+\dfrac{1}{4}BD^2\)

\(=\dfrac{1}{4}a^2+\dfrac{1}{4}a^2+\dfrac{1}{2}a^2=a^2\)

NV
12 tháng 11 2021

1.

\(\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{AI}=\overrightarrow{0}\Leftrightarrow\overrightarrow{IB}+\overrightarrow{AC}=0\)

\(\Leftrightarrow\overrightarrow{IB}=\overrightarrow{CA}\)

\(\Rightarrow\) I là 1 đỉnh của hình bình hành ABIC

2.

Gọi N là trung điểm AB \(\Rightarrow\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AB}\)

\(\overrightarrow{MA}+\overrightarrow{BM}+2\overrightarrow{MC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{BA}+2\overrightarrow{MC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MC}=\dfrac{1}{2}\overrightarrow{AB}\Leftrightarrow\overrightarrow{MC}=\overrightarrow{AN}\)

\(\Rightarrow\) M là 1 đỉnh của hình bình hành ANCM

20 tháng 10 2019

Gọi I là điểm thỏa mãn:

\(\overrightarrow{IA}+\overrightarrow{IB}+3\left(\overrightarrow{IC}-\overrightarrow{IB}\right)=\overrightarrow{0}\)

Với H là trung điểm AB, ta có:

\(2\overrightarrow{IH}+3\overrightarrow{BC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{IH}=\frac{3}{2}\overrightarrow{CB}\)

Khi đó: \(\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC}=2\overrightarrow{MI}+\overrightarrow{IA}-2\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{MI}=\overrightarrow{0}\)

\(\Rightarrow\) M trùng I.

20 tháng 10 2019

@Julian Edward ukm học tốt nhé ^^