x(4-x)>=0
note; >= ( lớn hơn hoặc bằng)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện xđ:
x khác ( -2,2,0)
A=\(\left(\frac{1}{x+2}+\frac{1}{x-2}\right):x-\frac{2}{x}\)
=\(\left(\frac{x-2+x+2}{x^2-4}\right):x-\frac{2}{x}\)
=\(\frac{2}{x^2-4}-\frac{2}{x}=\frac{2x-2x^2+8}{x\left(x^2-4\right)}\)
\(A=\left(\frac{1}{x+2}+\frac{1}{x-2}\right)\times\frac{x-2}{x}\)
a) ĐKXĐ : \(x\ne0;x\ne-2;x\ne2\)
b) Rút gọn:
\(A=\frac{x-2+x+2}{\left(x+2\right)\left(x-2\right)}\times\frac{x-2}{x}=\frac{2}{x+2}\)
c) Tìm x>0 để: \(A>\frac{1}{2}\Rightarrow\frac{2}{x+2}>\frac{1}{2}\)Do x>0 nên x + 2 >0 => x + 2 <4 =>x < 2.
Vậy, với x dương để A > 1/2 thì x<2
d) A nguyên thì 2 chia hết cho x+2 hay x+2 thuộc U(2) = {-2;-1;1;2)
Có 4 giá trị nguyên của x là: -4; -3; -1; 0 để A có giá trị nguyên.
\(\left(x^2-5\right)\left(x^2+1\right)=0\)
<=> \(\hept{\begin{cases}x^2-5=0\\x^2+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x^2=5\\x^2=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=\sqrt{5};x=-\sqrt{5}\\x\in\varnothing\end{cases}}\)
câu còn lại tương tự nha
Ta có:
\(\frac{x}{x+1}=1-\frac{1}{x+1}\)
\(\frac{y}{y+1}=1-\frac{y}{y+1}\)
\(\frac{z}{z+4}=1-\frac{4}{z+4}\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)
\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)
c) x - 6\(\sqrt{x}\)+ 9 = \(\left(\sqrt{x}\right)^2\)- 2.\(\sqrt{x}\).3 + 9 = \(\left(\sqrt{x}-3\right)^2\)
d) Tương tự.
a,b) Không hiểu
\(a,x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(b,x-5=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)
\(c,x-6\sqrt{x}+9=\left(\sqrt{x}-3\right)^2\)
\(d,x-4\sqrt{x}+4=\left(\sqrt{x}-2\right)^2\)
\(x\left(4-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\4-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x\le0\\4-x\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le0\\x\ge4\end{cases}}\)
\(\Leftrightarrow0\le x\le4\).