K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

ban can gap ko

11 tháng 8 2019

ko mai

29 tháng 6 2018

Từ 2 giả thiết: \(a+b+c=2018;\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{6}{2018}\)

\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\frac{2018.6}{2018}=6\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=6\)

\(\Leftrightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=6\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=3\)

Vậy giá trị của biểu thức đó là 3.

30 tháng 8 2016

\(\Rightarrow\frac{b.c+a.c+a.b}{a.b.c}=1\)

\(\Rightarrow\frac{\left(a.b.c\right)\left(a.b.c\right)}{a.b.c}\)

\(\Rightarrow a.b.c=1\)

Vì a,b,c \(\in\) N* => a,b,c > 0. 

Mà a.b.c= 1 => a,b,c chỉ có thể =1 

Theo đề bài ra: a,b,c là 3 STN khác nhau => Ko tồ tại a,b,c

30 tháng 8 2016

Nhanh v~,chưa kịp làm.

25 tháng 10 2020

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(A=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Vậy .......

25 tháng 10 2020

Haiz, sao lại thiếu sự quan sát thế nhỉ?

TH1: \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)\(\Rightarrow A=\frac{a}{-a}=\frac{b}{-b}=\frac{c}{-c}=-1\)

TH2: \(a+b+c\ne0\)\(\Rightarrow A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

23 tháng 7 2016

a) \(\frac{x}{3}-\frac{10}{21}=-\frac{1}{7}\)

\(\Rightarrow\frac{x}{3}=-\frac{1}{7}+\frac{10}{21}\)

\(\Rightarrow\frac{x}{3}=\frac{7}{21}\)

\(\Rightarrow\frac{x}{3}=\frac{1}{3}\)

\(\Rightarrow x=1\)

\(x-25\%=\frac{1}{2}\)

\(\Rightarrow x-\frac{1}{4}=\frac{1}{2}\)

\(\Rightarrow x=\frac{1}{2}+\frac{1}{4}\)

\(\Rightarrow x=\frac{3}{4}\)

c) \(-\frac{5}{6}+\frac{8}{3}+-\frac{29}{6}\le x\le-\frac{1}{2}+2+\frac{5}{2}\)

\(\Rightarrow-3\le x\le4\)

\(\Rightarrow x\in\left\{-3;-2;-1;0;1;2;3;4\right\}\)

24 tháng 7 2016

a)x/3-10/21=-1/7

 x/3=-1/7+10/21

x/3=1/3

=> x= 1

   

25 tháng 10 2020

Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

=> \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\) (Vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\))

=> \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)(đpcm)