K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2015

cho mk sửa chut nha pt 2, là\(2(x+y)+\sqrt{x}+1=\sqrt{2(x+y+11)}\)

18 tháng 1 2017

\(\hept{\begin{cases}x^3+y^3=2\\xy\left(x+y\right)=2\end{cases}}\)

Trừ cho nhau có nghiệm

\(\left(x+y\right)\left[\left(x^2-xy+y^2\right)-xy\right]=0\)

\(\orbr{\begin{cases}x+y=0\left(loai\right)\\\left(x-y\right)^2=0\Rightarrow x=y\end{cases}}\)\(2x^3=2\Rightarrow x=1\) Kết luận có nghiệm x=y=1

19 tháng 6 2016

ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiucche

18 tháng 12 2020

Đề bài: Giải hệ phương trình:

\(\left\{{}\begin{matrix}y^3-12y-x^3+6x^2-16=0\left(1\right)\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\left(2\right)\end{matrix}\right.\).

Giải:

ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le4\\-2\le y\le2\end{matrix}\right.\).

\(\left(1\right)\Leftrightarrow y^3-12y=\left(x-2\right)^3-12\left(x-2\right)\)

\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+\left(x-2\right)y+y^2-12\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y+2\\x^2+xy+y^2-4x-2y-8=0\end{matrix}\right.\).

+) TH1: \(x=y+2\): Thay vào (2) ta được:

\(4y^2+2\sqrt{4-y^2}-5\sqrt{4\left(y+2\right)-\left(y+2\right)^2}+6=0\)

\(\Leftrightarrow4y^2+2\sqrt{4-y^2}-5\sqrt{4-y^2}+6=0\)

\(\Leftrightarrow4y^2+6=3\sqrt{4-y^2}\)

\(\Leftrightarrow\left(4y^2+6\right)^2=9\left(4-y^2\right)\)

\(\Leftrightarrow16y^4+57y^2=0\)

\(\Leftrightarrow y=0\Rightarrow x=2\) (TMĐK).

+) TH2: \(x^2+xy+y^2-4x-2y-8=0\):

\(\Leftrightarrow\left(x-2\right)^2+y^2+\left(x-2\right)y=12\).

Do VT \(\le12\) (Đẳng thức xảy ra khi và chỉ khi x = 4; y = 2 hoặc x = 0; y = -2).

Do đó \(\left[{}\begin{matrix}x=4;y=2\\x=0;y=-2\end{matrix}\right.\).

Thử lại không có gt nào thỏa mãn.

Vậy...

 

12 tháng 10 2017

PT 1 \(\Leftrightarrow x-y.x^2+xy+y^2+3.x-y-3x^2+y^2-2=0\)

\(\Leftrightarrow x^3-3x^3+3x-1=y^3+3y^3+3y+1\)

\(\Leftrightarrow x-1^3=x+1^3\)

\(\Leftrightarrow x-y-2=0\)

Thay vào PT 2 nhân liên hợp. 

PT 1 suy ra \(y=x-2\)thay vào PT 2, ta có:

\(4\sqrt{x+2}+\sqrt{22-3x}=x^2+8\)\(-2\le x\le\frac{22}{3}\)

\(\Leftrightarrow4.\sqrt{x+2}-2+\sqrt{22-3x}-4=x^2-4\)

\(\Leftrightarrow x-2.x+2+\frac{3}{\sqrt{22-3x}+4}-\frac{4}{\sqrt{x+2}+2}=0\)

TH1:x=2 thay vào (1) suy ra y=0

TH2: f(x)= \(x+2+\frac{3}{\sqrt{22-3x}+4}-\frac{4}{\sqrt{x+2}+2}=0\)*

ta thấy x=-1 là 1 nghiệm của PT(*)

NHận xét rằng giả xử có số a thoả \(-2\le x\le a\le\frac{22}{3}\)

Ta có: \(\sqrt{x+2}< \sqrt{a+2};\sqrt{22-3x}>\sqrt{22-3a}\)

\(\Rightarrow-\frac{4}{\sqrt{x+2}+2}< -\frac{4}{\sqrt{a+2}+2}\)

       \(\frac{3}{\sqrt{22-3x}+4}< \frac{3}{\sqrt{22-3a}+4}\)

Suy ra f(x)<< f(a) suy hàm f(x) đồng biến

suy x=-1 thì f(x)=0

       x<-1 thì f(x) <0

       x>-1 thì f(x)>0

suy ra x=-1 là nghiệm duy nhất của(*)

thay vào (1) ta có y=-3

P/s: Tôi ko chắc, mới lớp 6 thôi

1 tháng 7 2019

a)  ĐK: x, y, z khác 0

\(\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)=\frac{51}{4}\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2=\frac{867}{16}\end{cases}}\)

\(x+\frac{1}{x}=a;y+\frac{1}{y}=b;z+\frac{1}{z}=c\)

Ta có hệ >:

\(\hept{\begin{cases}a+b+c=\frac{867}{4}\\a^2+b^2+c^2=\frac{867}{16}\end{cases}}\)

Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{867}{16}\) với mọi a, b,c

"="   xảy ra khi và chỉ khi a=b=c

Hay \(x+\frac{1}{x}=y+\frac{1}{y}=z+\frac{1}{z}=\frac{17}{4}\)  giải ra tìm x, y, z

b) Hệ đối xứng:

\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)

Đặt x+y=S, xy=P

Ta có hệ :

\(\hept{\begin{cases}S+P=2+3\sqrt{2}\\S^2-2P=6\end{cases}}\)

=> \(\hept{\begin{cases}P=2+3\sqrt{2}-S\\S^2-2\left(2+3\sqrt{2}-S\right)=6\end{cases}}\)

Tự giải tìm S, P 

=> x,y