Trong mỗi trường hợp sau hãy tìm 2 đa thức P và đa thức Q thỏa mãn đẳng thức :
a) \(\frac{\left(x+2\right)P}{x-2}=\frac{\left(x-1\right)Q}{x^2-4};\)
b) \(\frac{\left(x+2\right)P}{x^2-1}=\frac{\left(x-2\right)Q}{x^2-2x+1}.\)
Cô ơi, cô đừng giải bài này mà hướng dẫn chi tiết phương pháp để tìm P và Q trong 2 theo từng câu a) và câu b) giúp em nhe cô. Em cám ơn cô nhìu nhìu ạ, hihi :)
a)\(\frac{\left(x+2\right)P}{x-2}=\frac{\left(x+2\right)^2P}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)^2P}{x^2-4}=\frac{\left(x-1\right)Q}{x^2-4}\Rightarrow\left(x+2\right)^2P=\left(x-1\right)Q\)
\(\Rightarrow\frac{P}{Q}=\frac{x-1}{\left(x+2\right)^2}\)
b) Từ gt,ta có :\(\left(x+2\right)\left(x^2-2x+1\right)P=\left(x^2-1\right)\left(x-2\right)Q\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)^2P=\left(x-1\right)\left(x+1\right)\left(x-2\right)Q\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)P=\left(x+1\right)\left(x-2\right)Q\)
\(\Rightarrow\frac{P}{Q}=\frac{\left(x+1\right)\left(x-2\right)}{\left(x+2\right)\left(x-1\right)}=\frac{x^2-x-2}{x^2+x-2}\)
Ở đây có nhiều cặp đa thức (P ; Q) thỏa mãn lắm ! Mình xét P/Q để chỉ rằng chúng tỉ lệ với 2 đa thức ở vế phải
Ví dụ : Câu a : P = 2 - 2x thì Q = -2x2 - 8x - 8
quy đồng 2 phân thức ở 2 bên dấu "=" => tử bằng nhau (có dạng A*P = B*Q) => A=Q; B=P (trường hợp A hoặc B hoặc cả A và B là tích của 2 đa thức thì triển khai tích đó thành đa thức)