Chứng minh rằng : \(\dfrac{A}{B}\in Z\) với :
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{2015.2016}+\dfrac{1}{2017.2018};\)
\(B=\dfrac{1}{1010.2018}+\dfrac{1}{1011.2017}+...+\dfrac{1}{2018.1010}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, a-b=ab => a=ab+b => a=b(a+1)
thay a=b(a+1) vào a:b ta có: => b:b(a+1)=a+1
Theo bài ra ta có: a:b=a-b
=> a+1=a-b
=>-b=1
=> b=-1
Thay b=-1 vào a-b=ab ta có : a-(-1)=-a
=> a +1=-a
=>a=-1/2
Vậy a=-1/2. b=-1
`x/(1.2)+x/(2.3)+x/(3.4)+.....+x/(2017.2018)=1`
`-> x/1 - x/2 +x/2-x/3+x/3-x/4+........+x/2017-x/2018=1`
`-> x-x/2018=1`
`-> 2017/2018 .x=1`
`-> x=2018/2017`
Tính: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2017.2018}+\dfrac{1}{2018.2019}\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2017.2018}+\dfrac{1}{2018.2019}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}+\dfrac{1}{2018}-\dfrac{1}{2019}\\ =1-\dfrac{1}{2019}\\ =\dfrac{2019-1}{2019}=\dfrac{2018}{2019}\)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{49\cdot50}\\ =1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{49}+\dfrac{1}{50}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+..+\dfrac{1}{9900}\)
\(A=\left(\dfrac{1}{2}+\dfrac{1}{12}\right)+\left(\dfrac{1}{30}+...+\dfrac{1}{9900}\right)\)
\(A>\dfrac{1}{2}+\dfrac{1}{12}\Rightarrow A>\dfrac{7}{12}\left(1\right)\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{5}{6}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< \dfrac{5}{6}\left(2\right)\)
\(\Rightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\rightarrowđpcm\)
Ta có :
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+..........+\dfrac{1}{99.100}\)
\(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+............+\dfrac{1}{99.100}>\dfrac{1}{2}+\dfrac{1}{12}=\dfrac{7}{12}\)
\(\Leftrightarrow A>\dfrac{1}{12}\)\(\left(1\right)\)
Lại có :
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...........+\dfrac{1}{99.100}\)
\(\Leftrightarrow A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-.........-\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Leftrightarrow A< \dfrac{5}{6}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\rightarrowđpcm\)
Dạng hay :v
Ta có:
\(A = \dfrac{1}{1.2} + \dfrac{1}{3.4} +...+ \dfrac{1}{49.50}\)
\(=>A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=>A=(1+\dfrac{1}{3}+...+\dfrac{1}{49})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50})\)
\(=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50})-2.(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50})\)
\(=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50})-(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25})\)
\(=>A=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50} (1)\)
Ta lại có:
\(B = \dfrac{1}{26.50} + \dfrac{1}{27.49} +...+ \dfrac{1}{50.26}\)
\(=>38B=\dfrac{38}{26.50}+\dfrac{38}{27.49}+...+\dfrac{38}{50.26}\)
\(=>38B=\dfrac{76}{26.50}+\dfrac{76}{27.49}+...+\dfrac{38}{38.38}\)
\(=>38B=\dfrac{1}{26}+\dfrac{1}{50}+\dfrac{1}{27}+\dfrac{1}{49}+...+\dfrac{1}{38}\)
\(=>38B=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50} (2)\)
Từ (1)(2):
\(=>A = 38B\)
\(=>A-38B=0\)
Ta biến đổi \(A=\dfrac{2-1}{1.2}+\dfrac{4-3}{3.4}+...+\dfrac{2016-2015}{2016.2015}+\dfrac{2018-2017}{2017.2018}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{1}{2017}-\dfrac{1}{2018}\)
\(A=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2017}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)\)
\(A=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2017}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)\)
\(A=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2017}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1009}\right)\)
\(A=\dfrac{1}{1010}+\dfrac{1}{1011}+...+\dfrac{1}{2017}+\dfrac{1}{2018}\)
Lại có \(B=\dfrac{1}{1010.2018}+\dfrac{1}{1011.2017}+...+\dfrac{1}{2018.1010}\)
\(B=\dfrac{1}{3028}.\left(\dfrac{3028}{1010.2018}+\dfrac{3028}{1011.2017}+...+\dfrac{3028}{2018.1010}\right)\)
\(B=\dfrac{1}{3028}\left(\dfrac{1}{1010}+\dfrac{1}{2018}+\dfrac{1}{1011}+\dfrac{1}{2017}+...+\dfrac{1}{2018}+\dfrac{1}{1010}\right)\)
\(B=\dfrac{1}{3028}.2\left(\dfrac{1}{1010}+\dfrac{1}{1011}+...+\dfrac{1}{2018}\right)\)
\(B=\dfrac{1}{3028}.2A\) \(\Rightarrow\dfrac{A}{B}=1514\inℤ\). Ta có đpcm