BÀI 1: Cho 3 số dương a,b,c có tổng bằng 1
CMR;\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
BÀI 2: Cho a,b,c là 3 cạnh tam giác:
CMR: \(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge\)
Giúp mình nhé mai nộp rồi. mk tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\ge9\)
\(\Leftrightarrow\dfrac{a+1}{a}.\dfrac{b+1}{b}\ge9\)
\(\Leftrightarrow ab+a+b+1\ge9ab\) ( vì ab >0)
\(\Leftrightarrow a+b+1\ge8ab\)
\(\Leftrightarrow2\ge8ab\) \(\left(a+b=1\right)\)
\(\Leftrightarrow1\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\) \(\left(a+b=1\right)\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng)
\(\Leftrightarrowđpcm\)
\(VT=\dfrac{a^2}{a+abc}+\dfrac{b^2}{b+abc}+\dfrac{c^2}{c+abc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3abc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\dfrac{1}{9}\left(a+b+c\right)^3}=\dfrac{1^2}{1+\dfrac{1}{9}.1^3}=\dfrac{9}{10}\)
Với a;b;c dương:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\sqrt[3]{abc}.\sqrt[3]{ab.bc.ca}\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\dfrac{1}{3}\left(a+b+c\right).\dfrac{1}{3}\left(ab+bc+ca\right)\)
\(=\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Đặt vế trái BĐT là P, ta có:
\(\dfrac{ab}{1-c^2}=\dfrac{ab}{\left(1-c\right)\left(1+c\right)}=\dfrac{ab}{\left(a+b\right)\left(a+c+b+c\right)}=\dfrac{ab}{\sqrt{a+b}.\sqrt{a+b}\left(a+c+b+c\right)}\)
\(\le\dfrac{ab}{\sqrt[]{2\sqrt[]{ab}}.\sqrt[]{a+b}.2\sqrt[]{\left(a+c\right)\left(b+c\right)}}=\dfrac{\sqrt[4]{\left(ab\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Tương tự:
\(\dfrac{bc}{1-a^2}\le\dfrac{\sqrt[4]{\left(bc\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
\(\dfrac{ca}{1-b^2}\le\dfrac{\sqrt[4]{\left(ca\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Cộng vế:
\(P\le\dfrac{\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Nên ta chỉ cần chứng minh:
\(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\le\dfrac{3}{2\sqrt[]{2}}\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\Leftrightarrow\left(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\right)^2\le\dfrac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Mà \(\dfrac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)\)
Nên ta chỉ cần chứng minh:
\(\left(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\right)^2\le\left(a+b+c\right)\left(ab+bc+ca\right)\)
Thật vậy:
\(\left(\sqrt[4]{ab}.\sqrt[]{ab}+\sqrt[4]{bc}.\sqrt[]{bc}+\sqrt[4]{ca}.\sqrt[]{ca}\right)^2\le\left(\sqrt[]{ab}+\sqrt[]{bc}+\sqrt[]{ca}\right)\left(ab+bc+ca\right)\)
\(\le\left(a+b+c\right)\left(ab+bc+ca\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
dễ làm
1:5/6va 1/8
2:55 va 99
3:3 va 7
mình làm rồi bạn ạ,mình mới học sag ny, cho minh nha
cho 3 số dương a,b,c có tổng bằng 1
chứng minh rằng : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)
Mình bổ sung một cách làm khác nhé.
Áp dụng BĐT Cô-si cho 3 số dương \(a,b,c\), ta có \(a+b+c\ge3\sqrt[3]{abc}\) \(\Rightarrow1\ge3\sqrt[3]{abc}\) (1)
Áp dụng BĐT Cô-si cho 3 số dương \(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\) ta có \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\) (2)
Nhân theo vế của các BĐT (1) và (2), ta được \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\) (đpcm)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{3}\)
\(Ta\) có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(=\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}\)
\(=1+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{a}{b}+\dfrac{c}{b}+1+\dfrac{a}{c}+\dfrac{b}{c}+1\)
\(=\left(1+1+1\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\)
\(Ta\) có : \(\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge2\Leftrightarrow\dfrac{a^2+b^2}{ab}-2\ge0\Leftrightarrow\dfrac{a^2-2ab+b^2}{ab}\ge0\)
\(cmt\) \(tương\) \(tự\) \(với\) : \(\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\) \(và\) \(\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\) \(đều\) \(\ge2\) \(như\) \(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge2\)
\(\Rightarrow\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}\ge9\) \(hay\) \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)
Bài 1:
uses crt;
var n,i,s:integer;
begin
clrscr;
write('Nhap n='); readln(n);
s:=0;
for i:=1 to n do
if i mod 6=0 then s:=s+i;
writeln(s);
readln;
end.
Bài 2:
uses crt;
var a,b,c,ucln,i:integer;
begin
clrscr;
write('a='); readln(a);
write('b='); readln(b);
write('c='); readln(c);
while a<>b do
begin
if a>b then a:=a-b
else b:=b-a;
end;
ucln:=a;
while ucln<>c do
begin
if ucln>c then ucln:=ucln-c
else c:=c-ucln;
end;
writeln(ucln);
readln;
end.
\(P=a+\sqrt{\dfrac{a}{2}.2b}+\sqrt[3]{\dfrac{a}{4}.b.4c}\)
\(P\le a+\dfrac{1}{2}\left(\dfrac{a}{2}+2b\right)+\dfrac{1}{3}\left(\dfrac{a}{4}+b+4c\right)\)
\(P\le\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{16}{21};\dfrac{4}{21};\dfrac{1}{21}\right)\)
Ta có bổ đề :
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge9\)
Thật vậy: \(BĐT\Leftrightarrow3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge9\)(luôn đúng vì a/b+b/a>=2)
mà a+b+c=1 nên ta được \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
còn bài 2 phần đằng sau là j ạ>???