K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2023

1) \(\overrightarrow{AM}=\overrightarrow{AD}+\overrightarrow{DM}\)

             \(=\overrightarrow{AD}+\dfrac{2}{3}\overrightarrow{DC}\)

             \(=\overrightarrow{AD}+\dfrac{2}{3}\left(\overrightarrow{AC}-\overrightarrow{AD}\right)\)

             \(=\dfrac{2}{3}\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{AD}\) (đpcm)

2) \(AC=BD=\sqrt{AB^2+AD^2}=\sqrt{4^2+2^2}=2\sqrt{5}\)

\(\overrightarrow{AC}.\overrightarrow{AD}=\dfrac{AC^2+AD^2-CD^2}{2}\)

               \(=\dfrac{20+4-16}{2}=4\)

3) Gọi O là tâm hình chữ nhật

\(\Rightarrow2\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)

Ta có:

\(2PA^2+PB^2+2PC^2+PD^2\)

\(=2\left(\overrightarrow{PO}+\overrightarrow{OA}\right)^2+\left(\overrightarrow{PO}+\overrightarrow{OB}\right)^2+2\left(\overrightarrow{PO}+\overrightarrow{OC}\right)^2+\left(\overrightarrow{PO}+\overrightarrow{OD}\right)^2\)

\(=6PO^2+2OA^2+OB^2+2OC^2+OD^2+2\overrightarrow{PO}\left(2\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OC}+\overrightarrow{OD}\right)\)

\(=\)\(6PO^2+2OA^2+OB^2+2OC^2+OD^2\)

\(=6PO^2+6OA^2\left[OB=OD=OA=OC\right]\)

\(=6PO^2+6\left(\sqrt{5}\right)^2\)

\(=6PO^2+30\ge30\) 

Dấu "=" xảy ra \(\Leftrightarrow O\equiv P\) 

\(\Rightarrow\dfrac{1}{2PA^2+PB^2+2PC^2+PD^2}\le\dfrac{1}{30}\)

\(Max\dfrac{1}{2PA^2+PB^2+2PC^2+PD^2}=\dfrac{1}{30}\Leftrightarrow P\equiv O\)

27 tháng 12 2023

1) \(\sqrt{2x-1}=\sqrt{x^2+4x-4}\left(Đk:x\ge\dfrac{1}{2}\right)\)

\(\Leftrightarrow2x-1=x^2+4x-4\)

\(\Leftrightarrow x^2+2x-3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\x=-3\left(L\right)\end{matrix}\right.\)

Vậy \(S=\left\{1\right\}\)

2) \(\sqrt{x^2-4x+3}=x-3\left(Đk:x\ge3\right)\)

\(\Leftrightarrow\left(x-3\right)^2=x^2-4x+3\)

\(\Leftrightarrow x^2-6x+9=x^2-4x+3\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)

Vậy \(S=\left\{3\right\}\)

27 tháng 12 2023

Để phương trình: \(x^2-2\left(m-1\right)x+4m+8=0\) có nghiệm

\(\Rightarrow\Delta\ge0\)

\(\Leftrightarrow4\left(m-1\right)^2-4\left(4m+8\right)\ge0\)

\(\Leftrightarrow4m^2-8m+4-16m-32\ge0\)

\(\Leftrightarrow4m^2-24m-28\ge0\)

\(\Leftrightarrow m^2-6m-7\ge0\)

\(\Leftrightarrow\left(m+1\right)\left(m-7\right)\ge0\)

\(\Rightarrow m\in(-\infty;-1]\cup[7;+\infty)\)

26 tháng 12 2023

chỉ nhờ vào tương lai

26 tháng 12 2023

Tùy em nhá, có thể là em sẽ chỉ đc loại khá thôi em ạ, giỏi thì phải tất cả trên 9 cơ em ạ.

24 tháng 12 2023

Có \(\overrightarrow{MA}+k\overrightarrow{MB}+\left(1-k\right)\overrightarrow{MC}=\overrightarrow{0}\)

\(\Leftrightarrow\left(\overrightarrow{MA}+\overrightarrow{MC}\right)+k\left(\overrightarrow{MB}-\overrightarrow{MC}\right)=\overrightarrow{0}\)       (1)

Gọi N là trung điểm của AC thì 

(1) \(\Leftrightarrow2\overrightarrow{MN}+k\overrightarrow{CB}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{NM}=\dfrac{k}{2}\overrightarrow{CB}\)      (2)

Vậy điểm M là điểm thỏa mãn \(\overrightarrow{NM}=\dfrac{k}{2}\overrightarrow{CB}\) với N là trung điểm AC.

21 tháng 12 2023

'''''''''''''F'F'S'JURSMJHYT,JTHDNHTDNMYHJFGJHTMJHTMJYT