K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Thay x=3 vào A, ta được:

\(A=\dfrac{2\cdot3}{3-1}=\dfrac{6}{2}=3\)

2: \(B=\dfrac{x}{x-1}-\dfrac{3}{x+1}-\dfrac{2}{x^2-1}\)

\(=\dfrac{x}{x-1}-\dfrac{3}{x+1}-\dfrac{2}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right)-3\left(x-1\right)-2}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+x-3x+3-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

3: \(A\cdot B=x\)

=>\(x=\dfrac{x-1}{x+1}\cdot\dfrac{2x}{x-1}=\dfrac{2x}{x+1}\)

=>\(x\left(x+1\right)=2x\)

=>\(x\left(x-1\right)=0\)

=>\(\left[{}\begin{matrix}x=0\left(nhận\right)\\x=1\left(loại\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
14 tháng 5

Bạn có thể chụp hình rõ hơn không? Đề mờ quá.

Câu 1:

a: Khi x=3 thì \(A=\dfrac{3-6}{3+2}=\dfrac{-3}{5}\)

b: \(B=\dfrac{6}{x-2}+\dfrac{x}{x+2}-\dfrac{8}{x^2-4}\)

\(=\dfrac{6}{x-2}+\dfrac{x}{x+2}-\dfrac{8}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{6\left(x+2\right)+x\left(x-2\right)-8}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{6x+12+x^2-2x-8}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{x-2}\)

c: \(P=A\cdot B=\dfrac{x+2}{x-2}\cdot\dfrac{x-6}{x+2}=\dfrac{x-6}{x-2}\)

P=3/2

=>\(\dfrac{x-6}{x-2}=\dfrac{3}{2}\)

=>\(3\left(x-2\right)=2\left(x-6\right)\)

=>3x-6=2x-12

=>x=-6(nhận)

Câu 2:

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

b: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔBHA~ΔBAC

14 tháng 5

Câu 1

Gọi x (km) là độ dài quãng đường AB (x > 0)

Thời gian đi từ A đến B: x/40 (h)

Thời gian đi từ B về A: x/50 (h)

36 phút = 3/5 h

Theo đề bài, ta có phương trình:

x/40 + x/50 + 3/5 = 6

5x + 4x + 40.3 = 200.6

9x + 120 = 1200

9x = 1200 - 120

9x = 1080

x = 1080 : 9

x = 120 (nhận)

Vậy quãng đường AB dài 120 km

14 tháng 5

Câu 2. Em xem lại đề nhé

a: ΔABC vuông tại A

mà AD là đường trung tuyến

nên DA=DB=DC

ΔDAB có DA=DB

nên ΔDAB cân tại D

=>\(\widehat{DAB}=\widehat{DBA}\)

mà \(\widehat{DAB}+\widehat{DFA}=90^0\)(ΔDAF vuông tại D)

và \(\widehat{DBA}+\widehat{DCA}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{DFA}=\widehat{DCA}\)

Xét ΔAEF vuông tại A và ΔABC vuông tại A có

\(\widehat{AFE}=\widehat{ACB}\)

Do đó: ΔAEF~ΔABC

b: Xét ΔDBF và ΔDEC có

\(\widehat{DFB}=\widehat{DCE}\)

\(\widehat{BDF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó ΔDBF~ΔDEC

=>\(\dfrac{DB}{DE}=\dfrac{DF}{DC}\)

=>\(DB\cdot DC=DE\cdot DF\)

=>\(DC^2=DE\cdot DF\)

AH
Akai Haruma
Giáo viên
13 tháng 5

Lời giải:
Áp dụng BĐT Cauchy có:

$\frac{a^3}{b}+ab\geq 2\sqrt{\frac{a^3}{b}.ab}=2a^2$

$\frac{b^3}{c}+bc\geq 2b^2$

$\frac{c^3}{a}+ac\geq 2c^2$

$\Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+bc+ac\geq 2(a^2+b^2+c^2)(1)$

Cũng áp dụng BĐT Cauchy ta dễ thấy:
$a^2+b^2+c^2\geq ab+bc+ac(2)$

Từ $(1); (2)\Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\geq a^2+b^2+c^2+ab+bc+ac-(ab+bc+ac)=a^2+b^2+c^2$
Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
13 tháng 5

Lần sau bạn lưu ý gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu của bạn hơn nhé.

1: Chiều cao của khối rubik là:

\(44,002\cdot3:22,45=5,88\left(cm\right)\)

2:

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔHBA~ΔABC

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)

=>\(BA^2=BH\cdot BC\)

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

Xét ΔCAB có CD là phân giác

nên \(\dfrac{DA}{AC}=\dfrac{DB}{BC}\)

=>\(\dfrac{DA}{24}=\dfrac{DB}{30}\)

=>\(\dfrac{DA}{4}=\dfrac{DB}{5}\)

mà DA+DB=AB=18cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DA}{4}=\dfrac{DB}{5}=\dfrac{DA+DB}{4+5}=\dfrac{18}{9}=2\)

=>\(DA=4\cdot2=8\left(cm\right)\)

1: Chiều cao của khối rubik là:

\(44,002\cdot3:22,45=5,88\left(cm\right)\)

2:

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔHBA~ΔABC

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)

=>\(BA^2=BH\cdot BC\)

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

Xét ΔCAB có CD là phân giác

nên \(\dfrac{DA}{AC}=\dfrac{DB}{BC}\)

=>\(\dfrac{DA}{24}=\dfrac{DB}{30}\)

=>\(\dfrac{DA}{4}=\dfrac{DB}{5}\)

mà DA+DB=AB=18cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DA}{4}=\dfrac{DB}{5}=\dfrac{DA+DB}{4+5}=\dfrac{18}{9}=2\)

=>\(DA=4\cdot2=8\left(cm\right)\)

a: Vì \(\dfrac{6}{12}=\dfrac{9}{18}=\dfrac{12}{24}\left(=\dfrac{1}{2}\right)\)

nên hai tam giác này đồng dạng với nhau

b: Vì \(\dfrac{AB}{DE}=\dfrac{AC}{DF}\ne\dfrac{BC}{EF}\)

nên hai tam giác này không đồng dạng với nhau

Câu 5:

Gọi hàm số bậc nhất cần tìm có dạng là y=ax+b(\(a\ne0\))

Vì đồ thị hàm số y=ax+b song song với đường thẳng y=-2x+1 nên \(\left\{{}\begin{matrix}a=-2\\b\ne1\end{matrix}\right.\)

Vậy: y=-2x+b

Thay x=-1 và y=3 vào y=-2x+b, ta được:

\(\left(-2\right)\cdot\left(-1\right)+b=3\)

=>b+2=3

=>b=1(loại)

Vậy: KHông có hàm số bậc nhất nào thỏa mãn yêu cầu đề bài

Câu 4: 

Gọi hàm số bậc nhất cần tìm có dạng là y=ax+b(\(a\ne0\))

Vì đồ thị hàm số y=ax+b song song với đường thẳng y=-2x+1 nên \(\left\{{}\begin{matrix}a=-2\\b\ne1\end{matrix}\right.\)

Vậy: y=-2x+b

Thay x=-1 và y=4 vào y=-2x+b, ta được:

\(\left(-2\right)\cdot\left(-1\right)+b=4\)

=>b+2=4

=>b=2(nhận)

vậy: y=-2x+2

loading...

c: Vì khi x=0 thì \(B=2\)

nên khi x=0 thì B là số nguyên