K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(-6x^2+23x-20\)

\(=-6x^2+15x+8x-20\)

\(=-3x\left(2x-5\right)+4\left(2x-5\right)=\left(2x-5\right)\left(-3x+4\right)\)

DT
17 tháng 6

\(-6x^2+23x-20=\left(-6x^2+8x\right)+\left(15x-20\right)\\ =-2x\left(3x-4\right)+5\left(3x-4\right)\\ =\left(-2x+5\right)\left(3x-4\right)\)

Sửa đề: \(3x^2-6xy+3y^2-12z^2\)

\(=3\left(x^2-2xy+y^2-4z^2\right)\)

\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)

17 tháng 6

a) Vì tứ giác ABCD là hình vuông

nên \(\left\{{}\begin{matrix}AB=BC=CD=DA\\\widehat{ABC}=\widehat{BCD}=\widehat{CDA}=\widehat{DAB}=90^{\circ}\end{matrix}\right.\) (t/c)

Mà: \(\left\{{}\begin{matrix}MA=MB=\dfrac{AB}{2}\\NB=NC=\dfrac{BC}{2}\end{matrix}\right.\) (do M, N lần lượt là trung điểm của AB, BC)

Do đó: \(MA=MB=NB=NC\)

Xét \(\Delta BCM\) và \(\Delta CDN\) có: \(\left\{{}\begin{matrix}MB=NC\left(cmt\right)\\\widehat{MBC}=\widehat{NCD}\left(=90^{\circ}\right)\\BC=CD\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta BCM=\Delta CDN\left(c.g.c\right)\)

\(\Rightarrow\widehat{BCM}=\widehat{CDN}\) (hai góc tương ứng)

Mà: \(\widehat{BCM}+\widehat{MCD}=\widehat{BCD}=90^{\circ}\) (hai góc kề phụ)

nên \(\widehat{CDN}+\widehat{MCD}=90^{\circ}\) 

hay \(\widehat{CDH}+\widehat{HCD}=90^{\circ}\) (vì \(CM\cap DN=\left\{H\right\}\))

\(\Rightarrow\widehat{CHD}=90^{\circ}\Rightarrow CM\perp DN\) (đpcm)

b)

+, Gọi F là trung điểm của CD, G là giao điểm của AF với DH.

Xét \(\Delta DHC\) vuông tại H có: F là trung điểm của cạnh huyền CD

\(\Rightarrow HF=\dfrac{1}{2}CD=FD=FC\) (đli)

\(\Rightarrow F\) nằm trên đường trung trực của đoạn \(HD\) (1)

Vì F là trung điểm CD nên \(FC=FD=\dfrac{CD}{2}\)

Mà \(CD=AB;AM=BM=\dfrac{AB}{2}\left(cmt\right)\)

Do đó: \(FC=AM\)

Lại có: \(AB//CD\) (vì ABCD là hình vuông)

\(\Rightarrow AM//FC\) (vì \(M\in AB;F\in CD\))

Xét tứ giác AMCF có: \(\begin{cases} AM=FC(cmt)\\ AM//FC(cmt) \end{cases} \)

\(\Rightarrow\) Tứ giác AMCF là hình bình hành (t/c)

\(\Rightarrow AF//CM\) (t/c) \(\Rightarrow GF//HC\) (vì \(G\in AF;H\in CM\))

Xét \(\Delta DHC\) có: \(\begin{cases} F\text{ là trung điểm của CD }(cmt)\\ FG//HC\text{ }(cmt) \end{cases} \)

\(\Rightarrow G\) là trung điểm của DH (đli) (2)

Từ (1), (2) \(\Rightarrow FG\) là đường trung trực của đoạn DH 

Mà \(A\in FG\Rightarrow\) A nằm trên đường trung trực của đoạn DH

\(\Rightarrow AD=AH\) (t/c) (*)

+, CMTT, ta cũng có: \(EH=EC\) (**)

Từ (*) và (**) \(\Rightarrow AD+EC=AH+EH=AE\) (vì \(H\in AE\)) (đpcm)

$Toru$

17 tháng 6

cái này chịu luôn nha

16 tháng 6

ngoặc nghiếc phần tử ntn vậy bn

 

 

a: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có

BI chung

BA=BD

Do đó: ΔBAI=ΔBDI

=>\(\widehat{ABI}=\widehat{DBI}\)

=>BI là phân giác của góc ABC

b: Ta có: ΔBAD cân tại B

mà BI là đường phân giác

nên BI\(\perp\)AD

c: Ta có: \(\widehat{ABI}+\widehat{AIB}=90^0\)(ΔABI vuông tại A)

\(\widehat{DBK}+\widehat{EBH}=90^0\)(ΔHBE vuông tại H)

mà \(\widehat{ABI}=\widehat{EBH}\)

nên \(\widehat{AIB}=\widehat{BEH}\)

=>\(\widehat{AIE}=\widehat{AEI}\)

=>ΔAEI cân tại A

ΔAEI cân tại A

mà AK là đường cao

nên K là trung điểm của EI

AH
Akai Haruma
Giáo viên
16 tháng 6

1/

$x^2y=x-y+1$

$\Leftrightarrow y(x^2+1)=x+1$

$\Leftrightarrow y=\frac{x+1}{x^2+1}$

Với $x$ nguyên, để $y$ nguyên thì $x+1\vdots x^2+1(1)$

$\Rightarrow x(x+1)\vdots x^2+1$

$\Rightarrow (x^2+1)+(x-1)\vdots x^2+1$

$\Rightarrow x-1\vdots x^2+1(2)$

Từ $(1); (2)\Rightarrow (x+1)-(x-1)\vdots x^2+1$

$\Rightarrow 2\vdots x^2+1$

$\Rightarrow x^2+1=1$ hoặc $x^2+1=2$ (do $x^2+1\geq 1$ với mọi $x$ nguyên)

$\Rightarrow x=0$ hoặc $x=\pm 1$

$x=0$ thì $y=\frac{0^2+1}{0+1}=1$

$x=1$ thì $y=\frac{1^2+1}{1+1}=1$

$x=-1$ thì $y=0$

AH
Akai Haruma
Giáo viên
16 tháng 6

2/

$x^2+4xy+3y^2+4x+6y=0$

$\Leftrightarrow (x^2+4xy+4y^2)+4(x+2y)-2y-y^2=0$

$\Leftrightarrow (x+2y)^2+4(x+2y)=y^2+2y$

$\Leftrightarrow (x+2y)^2+4(x+2y)+4=y^2+2y+4$

$\Leftrightarrow (x+2y+2)^2=(y+1)^2+3$

$\Leftrightarrow 3=(x+2y+2)^2-(y+1)^2=(x+2y+2-y-1)(x+2y+2+y+1)$

$\Leftrightarrow 3=(x+y+1)(x+3y+3)$

Do $x,y$ nguyên nên đến đây ta xét các TH sau (đoạn này đơn giản rồi).

TH1: $x+y+1=1, x+3y+3=3$

TH2: $x+y+1=-1, x+3y+3=-3$

TH3: $x+y+1=3, x+3y+3=1$

TH4: $x+y+1=-3, x+3y+3=-1$

16 tháng 6

Ta có:

x²y + xy² + x + y = 2020

xy(x + y) + (x + y) = 2020

(x + y)(xy + 1) = 2020

(x + y).(11 + 1) = 2020

12(x + y) = 2020

x + y = 2020 : 12

x + y = 505/3

x² + y² = (x + y)² - 2xy

= (505/3)² - 2.11

= 255025/9 - 22

= 254827/9

17:

a: Gọi hai số tự nhiên liên tiếp là a;a+1

Hiệu bình phương của chúng là 209 nên ta có:

\(\left(a+1\right)^2-a^2=209\)

=>\(a^2+2a+1-a^2=209\)

=>2a+1=209

=>2a=208

=>a=104

vậy: Hai số cần tìm là 104;104+1=105

b: Gọi hai số tự nhiên lẻ liên tiếp là 2k+1;2k+3

Hiệu lập phương của chúng là 1178 nên ta có:

\(\left(2k+3\right)^3-\left(2k+1\right)^3=1178\)

=>\(8k^3+36k^2+54k+27-8k^3-12k^2-6k-1=1178\)

=>\(24k^2+48k+26-1178=0\)

=>\(24k^2+48k-1152=0\)

=>\(\left[{}\begin{matrix}k=6\left(nhận\right)\\k=-8\left(loại\right)\end{matrix}\right.\)

Vậy: Hai số cần tìm là \(2\cdot6+1=13;2\cdot6+3=15\)

19:

a: \(A=x^2-4x+10\)

\(=x^2-4x+4+6\)

\(=\left(x-2\right)^2+6>=6>0\forall x\)

=>ĐPCM

b: \(B=2x^2-2x+3\)

\(=2\left(x^2-x+\dfrac{3}{2}\right)\)

\(=2\left(x^2-x+\dfrac{1}{4}+\dfrac{5}{4}\right)\)

\(=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{2}>=\dfrac{5}{2}>0\forall x\)

=>ĐPCM

c: \(C=x^4-3x^2+5\)

\(=x^4-3x^2+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x^2-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}>0\forall x\)

=>ĐPCM

d: \(D=\dfrac{1}{4}x^4+\dfrac{2}{5}x^2+2\)

\(=x^2\left(\dfrac{1}{4}x^2+\dfrac{2}{5}\right)+2>=2>0\forall x\)

=>ĐPCM

e: \(E=x^2+\left(x+1\right)^2\)

\(=x^2+x^2+2x+1=2x^2+2x+1\)

\(=2\left(x^2+x+\dfrac{1}{2}\right)=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}>0\forall x\)

=>ĐPCM

f: \(F=\left(x-2\right)^2+\left(x-4\right)^2\)

\(=x^2-4x+4+x^2-8x+16\)

\(=2x^2-12x+20=2\left(x^2-6x+10\right)\)

\(=2\left(x^2-6x+9+1\right)=2\left[\left(x-3\right)^2+1\right]>=2\cdot1=2>0\forall x\)

 

g: \(G=x^2+y^2+2x-6y+11\)

\(=x^2+2x+1+y^2-6y+9+1\)

\(=\left(x+1\right)^2+\left(y-3\right)^2+1>=1>0\forall x,y\)

=>ĐPCM

 

AH
Akai Haruma
Giáo viên
16 tháng 6

Lời giải:

Ký hiệu gốc cây là $A$, ngọn cây bị gãy là $B$, điểm gãy là $C$. Ta có:

$AC+CB=8(1)$ (m)

$AB=4$ (m)

Áp dụng định lý Pitago:

$AC^2+AB^2=BC^2$

$\Rightarrow AC^2+4^2=BC^2$

$\Rightarrow BC^2-AC^2=16$

$\Rightarrow (BC-AC)(BC+AC)=16$

$\Rightarrow (BC-AC).8=16\Rightarrow BC-AC=2(2)$

Từ $(1); (2)\Rightarrow BC=(8+2):2=5; AC=(8-2):2=3$ (m)

Vậy độ dài từ điểm gãy tới gốc là $AC=3$ m

AH
Akai Haruma
Giáo viên
16 tháng 6

Hình vẽ: