Cho tam giác ABC, H là trực tâm. Lấy điểm M, N thuộc tia BC sao cho MN = BC và M nằm giữa B, C. Gọi D, E lần lượt là hình chiếu của M, N trên AC, AB. Chứng minh các điểm A, D, E, H cùng thuộc một đường tròn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
à, bạn định đưa câu hỏi Tón vui lên ho các bạn trả lời xong rồi chép vô để đạt 2 tháng Vid nè
bạn kiểm tra lại đề bán kính đường tròn nội tiếp = 6 thì đường kính BC là 12 mà 1 cạnh góc vuông bằng 20 thế chẳng khác nào cạnh góc vuông lớn hơn cạnh huyền:v
Ta có : \(xy=6\)
\(\Rightarrow x=\frac{6}{y}\left(y\ne0\right)\)
sau khi có \(x=\frac{6}{y}\) bạn tự thay vào phương trình 1 ẩn x rồi tìm ra x,y thỏa mãn
Xét mẫu số : \(\sqrt{11-2\sqrt{30}}=\sqrt{11-2.\sqrt{6}.\sqrt{5}}=\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}=\sqrt{6}+\sqrt{5}\)
\(\sqrt{8+4\sqrt{3}}=\sqrt{2.\left(4+2\sqrt{3}\right)}=\sqrt{2.\left(\sqrt{3}+1\right)^2}=\sqrt{2}.\left(\sqrt{3}+1\right)\)
\(\Rightarrow\frac{4}{\sqrt{8+4\sqrt{3}}}=\frac{2\sqrt{2}}{\sqrt{3}+1}\)\
Sau bạn nhân cả tử số và mẫu số của phân số thứ nhất với \(\sqrt{6}-\sqrt{5}\), phân số thứ 2 với \(\sqrt{3}-1\)rồi tính BT là ra
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhaaaaa
Vẽ các đường cao AI; BJ; CK của \(_{\Delta}\)ABC
NM = BC => BM = CN
Ta thấy: \(_{\Delta}\) vuông BHK ᔕ \(\Delta\) Vuông CHJ nên:
\(\frac{BK}{JC}=\frac{HK}{HJ}\left(1\right)\)
BJ // MD và CK // NE nên :
\(\frac{JC}{Jb}=\frac{BC}{BM}=\frac{BC}{CN}=\frac{BK}{KE}\)
\(=>\frac{KE}{Jb}=\frac{BK}{JC}\left(2\right)\)
Từ (1) và (2) => \(\frac{KE}{Jb}=\frac{HK}{JH}\)=> \(\Delta\) vuông EKH ᔕ \(\Delta\) vuông DJH
\(=>\hat{HEK}=\hat{HDJ}=>\hat{AEH}+\hat{HDJ}=180^0\left(đpcm\right)\)
mình không vẽ hình vì sợ bị duyệt nên lamf thê snayf cho nhanh