K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7

Tam giác ABC vuông tại A ta có:

\(tanB=\dfrac{AC}{AB}=>\dfrac{5}{12}=\dfrac{AC}{6}=>AC=\dfrac{5\cdot6}{12}=\dfrac{5}{2}\left(cm\right)\)

Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\\ =>BC=\sqrt{AB^2+AC^2}\\ =>BC=\sqrt{6^2+\left(\dfrac{5}{2}\right)^2}=\dfrac{13}{2}\left(cm\right)\)

Để giải bài toán, ta cần sử dụng một số công thức và định lý trong hình học, đặc biệt là định lý Pythagore và định nghĩa của các hàm số lượng giác.

Cho tam giác ABC vuông tại A, với AB = 6 cm và tanα = 5/12. Góc B = α.

a) Tính độ dài cạnh AC

Vì tam giác vuông tại A, góc α là góc B, ta có:

tan⁡(α)=đoˆˊi diệnkeˆˋ\tan(\alpha) = \frac{\text{đối diện}}{\text{kề}}

Trong tam giác ABC vuông tại A:

tan⁡(α)=BCAC\tan(\alpha) = \frac{BC}{AC}

Theo đề bài, tan⁡(α)=512\tan(\alpha) = \frac{5}{12}.

Do đó, ta có:

BCAC=512\frac{BC}{AC} = \frac{5}{12}

Từ đó suy ra:

BC=512ACBC = \frac{5}{12} AC

b) Tính độ dài cạnh BC

Ta sử dụng định lý Pythagore cho tam giác ABC vuông tại A:

BC2=AB2+AC2BC^2 = AB^2 + AC^2

Đầu tiên, ta cần tính AC.

Biết rằng tan⁡(α)=512\tan(\alpha) = \frac{5}{12}, do đó ta có:

sin⁡(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2} sin⁡(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2}

Vì tan(α) = 5/12 nên ta đặt BC = 5k và AC = 12k. Vì thế:

BC=5kBC = 5k

AC=12kAC = 12k

Sử dụng định lý Pythagore:

BC2=AB2+AC2BC^2 = AB^2 + AC^2

(5k)2=AB2+(12k)2(5k)^2 = AB^2 + (12k)^2

25k2=62+144k225k^2 = 6^2 + 144k^2

25k2=36+144k225k^2 = 36 + 144k^2

Từ đó, ta có:

AC=12k5AC = \frac{12k}{5}

AC2=AB2+BC2AC^2 = AB^2 + BC^2

(12k)2=62+(5k)2(12k)^2 = 6^2 + (5k)^2

144k2=36+25k2144k^2 = 36 + 25k^2

144k2−25k2=36144k^2 - 25k^2 = 36

119k2=36119k^2 = 36

k2=36119k^2 = \frac{36}{119}

k=36119k = \sqrt{\frac{36}{119}}

k=6119k = \frac{6}{\sqrt{119}}

BC=5k=5×6119=30119BC = 5k = 5 \times \frac{6}{\sqrt{119}} = \frac{30}{\sqrt{119}}

AC=12k=12×6119=72119AC = 12k = 12 \times \frac{6}{\sqrt{119}} = \frac{72}{\sqrt{119}}

Chúng ta có thể tính toán lại bằng cách:

Suy ra: BC=512ACBC = \frac{5}{12} AC AC=12×65=14.4AC = \frac{12 \times 6}{5} = 14.4 BC=5×1.2=6BC = 5 \times 1.2 = 6

Suy ra:...

18 tháng 10

A B C H M O N

a/

\(\widehat{ACM}=90^o\) (Góc nt chắn nửa đường tròn)

b/

\(\widehat{ABM}=90^o\) (Góc nt chắn nửa đường tròn)

\(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}=90^o\)

Xét tg vuông ABH

\(\widehat{BAH}+\widehat{ABC}=90^o\)

\(\Rightarrow\widehat{BAH}=\widehat{MBC}\)

\(\widehat{MBC}=\widehat{MAC}\) (Góc nt cùng chắn cung MC)

\(\Rightarrow\widehat{BAH}=\widehat{MBC}=\widehat{MAC}\)

Xét tg OAC có

OA = OC = R => tg OAC cân tại O \(\Rightarrow\widehat{MAC}=\widehat{OCA}\) (Góc ở đáy tg cân)

\(\Rightarrow\widehat{BAH}=\widehat{OCA}\)

c/

\(\widehat{ANM}=90^o\)  (Góc nt chắn nửa đường tròn) \(\Rightarrow MN\perp AH\)

Mà \(BC\perp AH\left(gt\right)\)

=> MN//BC (Cùng vg với AH)

=> BCMN là hình thang

\(sđ\widehat{BAH}=\dfrac{1}{2}sđcungBN\) (Góc nt đường tròn)

\(sđ\widehat{MAC}=\dfrac{1}{2}sđcungCM\) (Góc nt đường tròn)

Mà \(\widehat{BAH}=\widehat{MAC}\left(cmt\right)\)

\(\Rightarrow sđcungBN=sđcungCM\Rightarrow BN=CM\) (trong đường tròn 2 cung có số đo = nhau thì 2 dây trương cung bằng nhau)

=> BCMN là hình thang cân

\(\widehat{ANM}=90^o\) 

18 tháng 10

Gọi \(x>0\left(tấn\right)\) là khối lượng quặng chứa \(75\%\) sắt cần dùng

Khối lượng quặng chứa \(50\%\) sắt sẽ là: \(25-x\left(tấn\right)\)

Khối lượng sắt trong quặng \(75\%:\) \(0,75x\left(tấn\right)\)

Khối lượng sắt trong quặng \(50\%:\) \(0,5\left(25-x\right)\left(tấn\right)\)

Tổng khối lượng sắt trong hỗn hợp cuối cùng: \(25.0,66=16,5\left(tấn\right)\)

Ta có phương trình :

\(0,75x+0,5\left(25-x\right)=16,5\)

\(\Leftrightarrow0,25x=4\)

\(\Leftrightarrow x=16\)

Vậy cần \(16\left(tấn\right)\) quặng chứa \(75\%\) sắt để trộn với \(25-16=9\left(tấn\right)\) quặng chứa \(50\%\) sắt để được \(25\left(tấn\right)\) quặng chứa \(66\%\) sắt

a: Vì OO'=13cm<5cm+12cm

nên (O) cắt (O') tại hai điểm phân biệt

b: Xét ΔOAO' có \(OA^2+O'A^2=OO'^2\left(5^2+12^2=13^2\right)\)

nên ΔOAO' vuông tại A

=>AO\(\perp\)AO' tại A

Xét (O) có

AO là bán kính

AO\(\perp\)AO' tại A

Do đó: AO' là tiếp tuyến của (O) tại A

Xét (O') có

O'A là bán kính

AO\(\perp\)AO'

Do đó: AO là tiếp tuyến của (O') tại A

a: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

=>BA\(\perp\)AC tại A

Xét (O') có

ΔBAD nội tiếp

BD là đường kính

Do đó: ΔBAD vuông tại A

=>BA\(\perp\)AD tại A

Ta có: BA\(\perp\)AD
BA\(\perp\)AC
mà AC,AD có điểm chung là A

nên C,A,D thẳng hàng

b: Gọi H là giao điểm của AB và O'O

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(1)

Ta có: O'A=O'B

=>O' nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra O'O là đường trung trực của AB

=>O'O\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔOBO' có \(BO^2+BO'^2=O'O^2\left(3^2+4^2=5^2\right)\)

nên ΔOBO' vuông tại B

Xét ΔOBO' vuông tại B có BH là đường cao

nên \(BH\cdot O'O=BO\cdot BO'\)

=>\(BH=3\cdot\dfrac{4}{5}=2,4\left(cm\right)\)

H là trung điểm của AB

=>\(AB=2\cdot2,4=4,8\left(cm\right)\)

O là trung điểm của BC

=>BC=2*BO=2*4=8(cm)

O' là trung điểm của BD

=>BD=2*BO'=2*3=6(cm)

ΔBCD vuông tại B

=>\(S_{BCD}=\dfrac{1}{2}\cdot BC\cdot BD=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\)

nên \(\widehat{B}\simeq53^0\)

16 tháng 10

Rút y từ 3\(x\) - y = -1 ta có:

                y = 1 + 3\(x\)

Thay y = 1 + 3\(x\) vào pt: \(\dfrac{1}{x+1}\) + \(\dfrac{2}{y}\) = 1 ta được:

               \(\dfrac{1}{x+1}\) + \(\dfrac{2}{1+3x}\) = 1

 Em tự giải nốt

17 tháng 10

\(\dfrac{1}{a^3+b^3+abc}=\dfrac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)+abc}\le\dfrac{1}{\left(a+b\right)\left(2ab-ab\right)+abc}=\dfrac{1}{ab\left(a+b\right)+abc}=\dfrac{1}{ab\left(a+b+c\right)}\)
tương tự với các hạng tử còn lại, ta được
\(Vetrai\le\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\left(\dfrac{1}{a+b+c}\right)=\dfrac{a+b+c}{abc}\cdot\dfrac{1}{a+b+c}=\dfrac{1}{abc}\)
dấu bằng xảy ra khi a=b=c