Cho \(a,b,c>0\)thỏa mãn \(a+b+c=1\). Chứng minh \(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)\ge8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
123456789 + 123 = 123456912
HỌC TỐT
KB VỚI MÌNH NHA MỌI NGƯỜI
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)
\(=\frac{b^2c^2}{ab+ca}+\frac{c^2a^2}{bc+ab}+\frac{a^2b^2}{ca+bc}\)
\(\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{1}{2}\left(ab+bc+ca\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel(hoặc áp dụng BĐT quen thuộc: \(\frac{p^2}{m}+\frac{q^2}{n}\ge\frac{\left(p+q\right)^2}{m+n}\) 2 lần),ta có:
\(VT=\frac{\left(\frac{1}{a^2}\right)}{a\left(b+c\right)}+\frac{\left(\frac{1}{b^2}\right)}{b\left(c+a\right)}+\frac{\left(\frac{1}{c^2}\right)}{c\left(a+b\right)}\)
\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}\) (thay abc = 1 vào)
\(=\frac{ab+bc+ca}{2}=\frac{1}{2}\left(ab+bc+ca\right)^{\left(đpcm\right)}\)
\(sin\left(\frac{9\pi}{2}+\alpha\right)=sin\left(4\pi+\frac{\pi}{2}+\alpha\right)=sin\left(\frac{\pi}{2}+\alpha\right)=cos\alpha\)
bởi vì cái giò to hơn cs giá trị hơn cái cẳng
......................
...................................
tham khảo tại : Writing (trang 44 SGK Tiếng Anh 10 mới) - Soạn anh 10
< https://tailieuchua.com/soan-anh-10/tieng-anh-10-moi-tap-2/unit-9/writing-trang-44-sgk-tieng-anh-10-moi/ >
\(VT=\text{Σ}\left(\frac{1}{a}-1\right)=\frac{b+c}{a}.\frac{c+a}{b}.\frac{a+b}{c}\)
\(\ge\frac{8\sqrt{a^2b^2c^2}}{abc}=8\)(cô - si)
Dấu "=" xảy ra khi a = b = c =\(\frac{1}{3}\))
bỏ cái dấu xích ma kia đi nha, mk lộn qua tổng