Giải bất phương trình sau:
a) |x+3| + |x-1| < 6
b) |x+5| - |x-7| < 4
c) |x+2| - 3 |x-1| < 2(x+4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7 \(\times\) ( 2\(x\) - 5) - 5 \(\times\) (7\(x\) - 2) + 2 \(\times\) (5\(x\) - 7) = (\(x\) - 2) - (\(x\) +4)
14\(x\) - 35 - 35\(x\) + 10 + 10\(x\) - 14 = \(x\) - 2 - \(x\) - 4
(14\(x\) - 35\(x\) + 10\(x\)) - (35 - 10+ 14) = -6
(- 21 \(x\) + 10\(x\)) - (25 + 14) = - 6
-11\(x\) - 39 = - 6
-11\(x\) = - 6 + 39
- 11\(x\) = 33
\(x\) = 33 : (-11)
\(x\) = - 3
14x - 35 -35x + 10 + 10x - 14 = x-2-x-4
-11x -39 = -6
11x = -33
x= -3
\(x^2+xy+y^2=x+y\)
\(\Leftrightarrow2x^2+2xy+2y^2-2x-2y=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)
Tới đây do \(2=1^2+1^2+0^2\) , đồng thời để ý rằng vai trò \(x,y\) như nhau nên ta sẽ có 2TH
TH1: \(x+y=0\) và \(\left(x-1\right)^2+\left(y-1\right)^2=1^2+1^2\) (1)
khi đó \(y=-x\) nên \(x-1\ne y-1\). Do đó từ (1), giả sử \(x\ge y\) suy ra \(\left\{{}\begin{matrix}x-1=1\\y-1=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\), vô lí. Làm tương tự với \(y\ge x\)
TH2: \(x+y\ne0\). Khi đó \(x+y=\pm1\).
TH2.1: \(x+y=1\). Khi đó từ (1), suy ra 1 trong 2 số \(x-1,y-1\) phải bằng 0. Do vai trò x, y như nhau nên giả sử \(x-1=0\)\(\Leftrightarrow x=1\), khi đó \(y=0\), thỏa mãn. Ta tìm được nghiệm \(\left(x;y\right)=\left(1;0\right)\). Tương tự, tìm được nghiệm \(\left(x;y\right)=\left(0;1\right)\)
TH2.2: \(x+y=-1\). Giả sử \(x-1=0\) \(\Leftrightarrow x=1\), khi đó \(y=-2\), loại.
Như vậy, pt đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;1\right);\left(1;0\right)\right\}\)
Cách thứ 2 nhé:
\(x^2+xy+y^2=x+y\)
\(\Leftrightarrow x^2+\left(y-1\right)x+y^2-y=0\)
\(\Delta=\left(y-1\right)^2-4\left(y^2-y\right)\) \(=\left(y-1\right)^2-4y\left(y-1\right)\) \(=\left(y-1\right)\left[\left(y-1\right)-4y\right]\) \(=\left(y-1\right)\left(-1-3y\right)\).
Để pt đã cho có nghiệm thì \(\Delta=-\left(y-1\right)\left(3y+1\right)\ge0\) \(\Leftrightarrow\left(y-1\right)\left(3y+1\right)\le0\) \(\Leftrightarrow-\dfrac{1}{3}\le y\le1\). Do \(y\inℤ\) nên \(y\in\left\{0;1\right\}\). Nếu \(y=0\) thì thay vào pt đầu, dễ dàng suy ra \(x=1\). Còn nếu \(y=1\) thì cũng dễ dàng suy ra \(x=0\).
Vậy ohương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;1\right);\left(1;0\right)\right\}\)
D = (3x - 2)^2 - 3(x - 4)(4 + x) + (x - 3)^3 - (x^2 - x + 1)(x + 1)
D = 9x^2 - 12x + 4 - 3x^2 + 48 + x^3 - 9x^2 + 27x - 27 - x^3 - 1
D = -3x^2 + 15x + 24
3b)
Ta có \(4xy\le\left(x+y\right)^2\) nên \(x+y-16xyz\ge x+y-4z\left(x+y\right)^2\)
\(=1-z+4z\left(1-z\right)^2\)
\(=\left(1-z\right)\left[1-4z\left(1-z\right)\right]\)
\(=\left(1-z\right)\left(1-4z+4z^2\right)\)
\(=\left(1-z\right)\left(1-2z\right)^2\) \(\ge0\) (do \(z< 1\))
Từ đó suy ra \(x+y-16xyz\ge0\)
ĐTXR \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\z=\dfrac{1}{2}\\x+y+z=1\end{matrix}\right.\Leftrightarrow\left(x;y;z\right)=\left(\dfrac{1}{4};\dfrac{1}{4};\dfrac{1}{2}\right)\).
Kí hiệu \(S\) là tổng tất cả các số trên cùng 1 hàng, cột hay đường chéo. Dễ dàng kiểm chứng được \(-6\le S\le6\). Ta thấy từ \(-6\) đến \(6\) có tất cả là 13 số nguyên. Nói cách khác, sẽ có tất cả 13 giá trị khác nhau mà \(S\) có thể đạt được. Do trên bảng 6x6 có 6 cột, 6 hàng, 2 đường chéo ứng với 14 tổng S nên theo nguyên lí Dirichlet, sẽ tồn tại 2 tổng S mang cùng 1 giá trị, đây là đpcm.
RRất nhiều em nha: Đầu, cổ, chân , tay, mũi , mắt, lưng, ngực,...
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
My favorite hobby is playing badminton. I started about 2 years ago. I play badminton with my father everyday afternoon. I always play badminton at home. I think it is a sport very good for our health.
My favorite hobby is playing football. I started playing in the summer 2 years ago. I play football with my friends every afternoon. We always play football at home. I think it is a very good sport for our health.