một đoàn xe du lịch của trường thcs tại Long An, gồm 6 xe; tổng số học sinh tham quan là 330 em. Biết tổng số HS xe thứ nhất với số HS xe thứ sáu bằng tổng số HS xe thứ hai với HS xe thứ năm bằng tổng số HS xe thứ tư với số HS xe thứ ba. Hỏi số HS (có thể) trên từng xe?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi : `22` phút `=22/60=11/30` (giờ)
Gọi độ dài quãng đường AB là : `x` (km) (x>0)
+) Thời gian đi là : \(\dfrac{x}{15}\left(h\right)\)
+) Thời gian về là : \(\dfrac{x}{12}\left(h\right)\)
Mà thời gian về nhiều hơn thời gian đi `22` phút, nên ta có phương trình :
\(\dfrac{x}{12}-\dfrac{x}{15}=\dfrac{11}{30}\\ < =>\dfrac{15x}{180}-\dfrac{12x}{180}=\dfrac{66}{180}\\ =>15x-12x=66\\ < =>3x=66\\ < =>x=22\left(TMDK\right)\)
Vậy quãng đường AB dài 22km
a)
`2x+4=x-1`
`<=>2x-x=-4-1`
`<=>x=-5`
Vậy phương trình có tập nghiệm là : \(S=\left\{-5\right\}\)
b)
`2x(x-3)-5(x-3)=0`
`<=>(x-3)(2x-5)=0`
`=>x-3=0` hoặc `2x-5=0`
`<=>x=3` hoặc `x=5/2`
Vậy tập nghiệm phương trình là : \(S=\left\{3;\dfrac{5}{2}\right\}\)
c)
\(\dfrac{2x}{x+1}=\dfrac{x^2-x+8}{\left(x+1\right)\left(x-4\right)}\left(x\ne\left\{-1;4\right\}\right)\\ < =>\dfrac{2x\left(x-4\right)}{\left(x+1\right)\left(x-4\right)}=\dfrac{x^2-x+8}{\left(x+1\right)\left(x-4\right)}\\ =>2x\left(x-4\right)=x^2-x+8\\ < =>2x^2-8x=x^2-x+8\\ < =>2x^2-x^2-8x+x-8=0\\ < =>x^2-7x-8=0\\ < =>\left(x-8\right)\left(x+1\right)=0\\ =>\left[{}\begin{matrix}x=8\left(N\right)\\x=-1\left(L\right)\end{matrix}\right.\)
Vậy tập nghiệm phương trình là : \(S=\left\{8\right\}\)
`x^2-4x+y^2-6y+15=2`
`<=>x^2-4x+4+y^2-6y+9=0`
`<=>(x-2)^2+(y-3)^2=0`
`=>x-2=0` và `y-3=0`
`<=>x=2` và `y=3`
a) Vì tam giác ABC vuông tại A
Áp dụng định lý Pytago :
AB2 + AC2 = BC2
<=> 62 + 82 = BC2
<=> BC = 10
BD tia phân giác góc B nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{3}{5}\)(1)
mà AD + DC = AC = 8 (2)
Từ (1)(2) ta tìm được AD = 3 ; DC = 5
=> P = AD.DC = 3.5 = 15
b) Mà \(BD\cap AH=\left\{I\right\}\)
\(\Rightarrow\dfrac{AI}{IH}=\dfrac{AB}{BH}\)(3)
Xét tam giác ABH và tam giác ABC có
\(\widehat{ABC}\) chung ; \(\widehat{AHB}=\widehat{BAC}=90^{\text{o}}\)
nên \(\Delta CBA\sim\Delta ABH\)
\(\Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
\(\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\)( kết hợp (1);(3))
c) Tương tự dễ thấy
\(\Delta BIH\sim\Delta BDA\) (g-g)
=> \(\widehat{BDA}=\widehat{BIH}\)
lại có \(\widehat{BIH}=\widehat{AID}\) (đối đỉnh)
nên \(\widehat{BDA}=\widehat{AID}\) => Tam giác AID cân tại A
a) Xét tam giác vuông tại :
(định lí Pythagoras)
.
Xét tam giác phân giác có:
suy ra .
b) Xét tam giác phân giác có: .
Xét và có:
(góc chung)
suy ra (g.g).
Suy ra
.
Mà ta lại có nên .
c) Ta có (g.g)
suy ra .
(hai góc tương ứng)
mà (hai góc đối đỉnh)
suy ra
do đó tam giác cân tại .
Cái này anh thấy có vẻ chưa đúng đề lắm em ạ
Vì 440 không chia hết cho 3 nên sao bằng được
Gọi số đó là \(\overline{ab}\)
Vì đó là số lẻ chia hết cho `5` nên `b=5`
\(=>\overline{a5}\)
Vì hiện của số đó và chữ số hàng chục của nó bằng `86` nên ta có:
\(overline{a5}-a=86\)
\(<=>10a+5-a=86\)
`<=>a=9`
Vậy số cần tìm là `95`
a)
\(\dfrac{x-3}{5}+\dfrac{1-2x}{3}=6\\ < =>3x-9+5-10x=90\)
\(< =>3x-10x=90+9-5\\ < =>-7x=94\\ < =>x=-\dfrac{94}{7}\)
b)
\(\left(2x-3\right)\left(x^2+1\right)=0\\ < =>\left[{}\begin{matrix}2x-3=0\\x^2+1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x^2=-1\left(voli\right)\end{matrix}\right.\\ < =>x=\dfrac{3}{2}\)
c)
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\left(x\ne-1;x\ne2\right)\)
suy ra: \(2\left(x-2\right)-x-1=3x-11\)
\(< =>2x-4-x-1-3x+11=0\)
\(< =>2x-x-3x=4+1-11\\ < =>-2x=-6\\ < =>x=3\left(tm\right)\)
a) \(\dfrac{x-3}{5}+\dfrac{1-2x}{3}=6\)
\(\Leftrightarrow3\left(x-3\right)+5\left(1-2x\right)=90\)
\(\Leftrightarrow-4-7x=90\)
\(\Leftrightarrow x=-\dfrac{94}{7}\)
b) \(\left(2x-3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow2x-3=0\) (Vì \(x^2+1>0\))
\(\Leftrightarrow x=\dfrac{3}{2}\)
c) \(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\left(Đk:x\ne-1;x\ne2\right)\)
\(\Leftrightarrow2\left(x-2\right)-\left(x+1\right)=3x-11\)
\(\Leftrightarrow x-5=3x-11\)
\(\Leftrightarrow x=3\)