Tính giá trị biểu thức
\(\dfrac{2^8-2^3}{2^5-1}\)
\(\dfrac{4^8.9^4}{6^6.8^3}\)
\(\dfrac{27^4.2^3-3^{10}.4^3}{6^4.9^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{x+1}+3^{x+2}=2^2.3^4\)
\(3^{x+1}+3.3^{x+1}=4.81\)
\(4.3^{x+1}=4.81\)
\(3^{x+1}=81=3^4\)
\(x+1=4\Rightarrow x=3\)
Ta đặt \(x^4+ax+b=\left(x-4\right).P\left(x\right)\) với \(P\left(x\right)\) là một đa thức hệ số nguyên có bậc là 3. Khi đó giả sử \(P\left(x\right)=kx^3+lx^2+mx+n\). Khi đó \(\left(x-4\right)P\left(x\right)=\left(x-4\right)\left(kx^3+lx^2+mx+n\right)\) \(=kx^4+lx^3+mx^2+nx-4kx^3-4lx^2-4mx-4n\)
\(kx^4+\left(l-4k\right)x^3+\left(m-4l\right)x^2+\left(n-4m\right)x-4n\)
Đk đã cho tương đương với \(x^4+ax+b=kx^4+\left(l-4k\right)x^3+\left(m-4l\right)x^2+\left(n-4m\right)x-4n\) với mọi \(x\inℤ\)
hay\(\left(k-1\right)x^4+\left(l-4k\right)x^3+\left(m-4l\right)x^2+\left(n-4m-a\right)x-\left(4n+b\right)=0\) với mọi \(x\inℤ\)
hay \(k-1=0;l-4k=0;m-4l=0;n-4m-a=0;4n+b=0\)
\(\Leftrightarrow k=1,l=4,m=16\) và từ đó ta có \(\left\{{}\begin{matrix}n-64-a=0\\4n+b=0\end{matrix}\right.\). Điều này có nghĩa là \(4\left(64+a\right)+b=0\) \(\Leftrightarrow4a+b+256=0\).
Như vậy, để \(x^4+ax+b⋮x-4\) với mọi số nguyên \(x\) thì \(a,b\inℤ\) thỏa mãn \(4a+b+256=0\)
\(\dfrac{3}{16}\) - (\(x\) - \(\dfrac{5}{4}\)) - ( \(\dfrac{3}{4}\) - \(\dfrac{7}{8}\) - 1) = 2\(\dfrac{1}{2}\)
\(\dfrac{3}{16}\) - \(x\) + \(\dfrac{5}{4}\) - \(\dfrac{3}{4}\) + \(\dfrac{7}{8}\) + 1 = \(\dfrac{5}{2}\)
\(\dfrac{3}{16}\) - \(x\) + ( \(\dfrac{5}{4}\) - \(\dfrac{3}{4}\)) + (\(\dfrac{7}{8}\) + 1) = \(\dfrac{5}{2}\)
\(\dfrac{3}{16}\) - \(x\) + \(\dfrac{1}{2}\) + \(\dfrac{15}{8}\) = \(\dfrac{5}{2}\)
( \(\dfrac{3}{16}\) + \(\dfrac{1}{2}\) + \(\dfrac{15}{8}\)) - \(x\) = \(\dfrac{5}{2}\)
\(\dfrac{41}{16}\) - \(x\) = \(\dfrac{5}{2}\)
\(x\) = \(\dfrac{41}{16}\) - \(\dfrac{5}{2}\)
\(x\) = \(\dfrac{1}{16}\)
2, \(\dfrac{1}{2}\).( \(\dfrac{1}{6}\) - \(\dfrac{9}{10}\)) = \(\dfrac{1}{5}\) - \(x\) + ( \(\dfrac{1}{15}\) - \(\dfrac{-1}{5}\))
\(\dfrac{1}{2}\).(-\(\dfrac{11}{15}\)) = \(\dfrac{1}{5}\) - \(x\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{5}\)
- \(\dfrac{11}{30}\) = ( \(\dfrac{1}{5}\)+ \(\dfrac{1}{5}\)+ \(\dfrac{1}{15}\)) - \(x\)
- \(\dfrac{11}{30}\) = \(\dfrac{7}{15}\) - \(x\)
\(x\) = \(\dfrac{7}{15}\) + \(\dfrac{11}{30}\)
\(x\) = \(\dfrac{5}{6}\)
Gọi số đó là ab (a,b là chữ số; a khác 0)
Theo bài ra ta có:
ab-ba=n2 (Với nϵN)
⇒ a.10+b-b.10-a = n2
⇒ 9a-9b = n2
⇒ 9.(a-b)=n2
⇒ a-b=9 ⇒ a=9,b=0 (vì a,b đều bé hơn 10)
Vậy số cần tìm là 90
a) \(\dfrac{-12}{17}< \dfrac{x}{17}< \dfrac{-8}{17}\)
\(\Rightarrow-12< x< -8\)
\(\Rightarrow x\in\left\{-11;-10;-9\right\}\)
b) \(\dfrac{-1}{2}< x< \dfrac{5}{3}\)
\(\Rightarrow\dfrac{-3}{6}< x< \dfrac{10}{6}\)
\(\Rightarrow x\in\left\{\dfrac{-2}{6};\dfrac{-1}{6};0;\dfrac{1}{6};...;\dfrac{7}{6};\dfrac{8}{6};\dfrac{9}{6}\right\}\)
c) \(3,456< x\le7,89\)
\(\Rightarrow x\in\left\{3,456;3,457,3,458;...;7,89\right\}\)
d) \(5,82< \overline{5,8x0}< 8,845\)
\(\Rightarrow x\in\left\{3;4\right\}\)
e) \(32,82< \overline{3x,850}< 35,845\)
\(\Rightarrow x\in\left\{3;4\right\}\)
Từ 3 phương trình trên
\(\left(x+y+z\right)=\dfrac{-5}{x}=\dfrac{9}{y}=\dfrac{5}{z}=\dfrac{-5+9+5}{x+y+z}=\dfrac{9}{x+y+z}\)
\(\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\left(x+y+z\right)=\pm3\)
+ Với \(x+y+z=3\) Thay vào từng phương trình ta có
\(x=-\dfrac{5}{3};y=3;z=\dfrac{5}{3}\)
+ Với \(x+y+z=-3\) Thay vào từng phương trình có
\(x=\dfrac{5}{3};y=3;z=-\dfrac{5}{3}\)
\(a)\dfrac{-11}{12}và\dfrac{17}{-18}\) \(\Leftrightarrow\dfrac{-11}{12}và\dfrac{-17}{18}\) \(\Leftrightarrow\dfrac{-33}{36}và\dfrac{-34}{36}\)
Ta thấy rằng : \(-33>-34\Rightarrow\dfrac{-33}{36}>\dfrac{-34}{36}\)
Hay : \(\dfrac{-11}{12}>\dfrac{17}{-18}\)
\(b)\dfrac{-14}{-21}và\dfrac{-60}{-72}\)
Ta có : \(\dfrac{-14}{-21}\text{=}\dfrac{-14:-7}{-21:-7}\text{=}\dfrac{2}{3}\text{=}\dfrac{4}{6}\)
\(\dfrac{-60}{-72}\text{=}\dfrac{-60:-12}{-72:-12}=\dfrac{5}{6}\)
Do đó : \(\dfrac{-14}{-21}< \dfrac{-60}{-72}\)
\(c)\dfrac{2135}{13790}và\dfrac{4}{3}\)
Xét phân số : \(\dfrac{2135}{13790}\) ta thấy rằng : \(tử< mẫu\left(2135< 13790\right)\)
\(\Rightarrow\dfrac{2135}{13790}< 1\)
Xét phân số : \(\dfrac{4}{3}có\) : \(tử>mẫu\left(4>3\right)\)
\(\Rightarrow\dfrac{4}{3}>1\)
Do đó : \(\dfrac{2135}{13790}< \dfrac{4}{3}\)
\(d)\dfrac{2022}{2021}và\dfrac{10}{9}\)
Ta thấy rằng : \(\dfrac{2022}{2021}-\dfrac{1}{2021}\text{=}1\)
\(\dfrac{10}{9}-\dfrac{1}{9}\text{=}1\)
Mà : \(\dfrac{1}{9}>\dfrac{1}{2021}\)
\(\Rightarrow\dfrac{2022}{2021}< \dfrac{10}{9}\)
\(e)\dfrac{35}{36}và\dfrac{16}{17}\)
Ta có : \(\dfrac{35}{36}+\dfrac{1}{36}\text{=}1\)
\(\dfrac{16}{17}+\dfrac{1}{17}\text{=}1\)
Mà : \(\dfrac{1}{36}< \dfrac{1}{17}\)
\(\Rightarrow\dfrac{35}{36}>\dfrac{16}{17}\)
\(f)-1,3< -1,2\)
a) Ta có:
\(-\dfrac{11}{12}=\dfrac{1}{12}-1\)
\(-\dfrac{17}{18}=\dfrac{1}{18}-1\)
Mà: \(\dfrac{1}{12}>\dfrac{1}{18}\)
Hay: \(\dfrac{1}{12}-1>\dfrac{1}{18}-1\Rightarrow-\dfrac{11}{12}>-\dfrac{17}{18}\)
b) Ta có:
\(\dfrac{-14}{-21}=\dfrac{2}{3}=\dfrac{4}{6}\)
\(\dfrac{-60}{-72}=\dfrac{5}{6}\)
Mà: \(5>4\Rightarrow\dfrac{-60}{-72}>\dfrac{-14}{-21}\)
c) Ta có:
\(\dfrac{2135}{13790}=\dfrac{61}{394}< 1\) (tử nhỏ hơn mẫu)
\(\dfrac{4}{3}>1\) (tử lớn hơn mẫu)
Ta có: \(\dfrac{61}{394}< \dfrac{4}{3}\Rightarrow\dfrac{2135}{13790}< \dfrac{4}{3}\)
d) Ta có:
\(\dfrac{2022}{2021}=\dfrac{1}{2021}+1\)
\(\dfrac{10}{9}=\dfrac{1}{9}+1\)
Ta thấy: \(\dfrac{1}{2021}< \dfrac{1}{9}\Rightarrow\dfrac{1}{2021}+1< \dfrac{1}{9}+1\)
Hay \(\dfrac{2022}{2021}< \dfrac{10}{9}\)
e) Ta có:
\(\dfrac{35}{36}=1-\dfrac{1}{36}\)
\(\dfrac{16}{17}=1-\dfrac{1}{17}\)
Ta có: \(\dfrac{1}{36}< \dfrac{1}{17}\Rightarrow1-\dfrac{1}{36}>1-\dfrac{1}{17}\)
Hay \(\dfrac{35}{36}>\dfrac{16}{17}\)
f) Ta có: \(1,3>1,2\)
\(\Rightarrow-1,3< -1,2\)
A B C x y
\(\widehat{xOA}=\widehat{cOA}\) (gt) (1)
\(\widehat{yOB}=\widehat{COB}\) (gt) (2)
\(\widehat{COA}+\widehat{COB}=\widehat{AOB}=90^o\) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{xOA}+\widehat{yOB}=90^o\)
\(\Rightarrow\widehat{xOy}=\widehat{COA}+\widehat{COB}+\widehat{xOA}+\widehat{yOB}=90^o+90^o=180^o\)
=> Ox và Oy là hai tia đối nhau
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{2^8-2^3}{2^5-1}=\dfrac{2^3\left(2^5-1\right)}{2^5-1}=\dfrac{2^3}{1}=2^3=8\)
_____
\(\dfrac{4^8\cdot9^4}{6^6\cdot8^3}\)
`=`\(\dfrac{\left(2^2\right)^8\cdot\left(3^2\right)^4}{2^6\cdot3^6\cdot\left(2^3\right)^3}\)
`=`\(\dfrac{2^{16}\cdot3^8}{2^6\cdot3^6\cdot2^9}\)
`=`\(\dfrac{2^{16}\cdot3^8}{2^{15}\cdot3^6}\)
`=`\(\dfrac{3^2}{2}\) `=`\(\dfrac{9}{2}\)
______
\(\dfrac{27^4\cdot2^3-3^{10}\cdot4^3}{6^4\cdot9^3}\)
`=`\(\dfrac{\left(3^3\right)^4\cdot2^3-3^{10}\cdot\left(2^2\right)^3}{2^4\cdot3^4\cdot\left(3^2\right)^3}\)
`=`\(\dfrac{3^{12}\cdot2^3-3^{10}\cdot2^6}{2^4\cdot3^4\cdot3^6}\)
`=`\(\dfrac{3^{10}\cdot\left(3^2\cdot2^3-2^6\right)}{3^{10}\cdot2^4}\)
`=`\(\dfrac{72-2^6}{2^4}=\dfrac{8}{16}=\dfrac{1}{2}\)
\(\dfrac{2^8-2^3}{2^5-1}=\dfrac{2^3\left(2^5-1\right)}{2^5-1}=2^3=8\)
\(\dfrac{4^8.9^4}{6^6.8^3}=\dfrac{2^{16}.3^8}{2^6.3^6.2^9}=2.3^2=18\)
\(\dfrac{27^4.2^3-3^{10}.4^3}{6^4.9^3}=\dfrac{3^{12}.2^3-3^{10}.2^6}{2^4.3^4.3^6}=\dfrac{2^3.3^{10}.\left(3^2-2^3\right)}{2^4.3^{10}}=\dfrac{9-8}{2}=\dfrac{1}{2}\)