Cho hình thang cân MNPQ MN//PQ
a. chứng minh OM=ON, OP=OQ
b. chứng minh OI là đường trung trực của PQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
0;504;1008
Giải thích các bước giải:
Vì x+14 chia hết cho 7 mà 14 chia hết cho 7 nên x chia hết cho 7
Vì x-16 chia hết cho 8 mà 16 chia hết cho 8 nên x chia hết cho 8
Vì 54+x chia hết cho 9 mà 54 chia hết cho 9 nên x chia hết cho 9
Suy ra x là BC(7;8;9)
Ta có: BCNN(7;8;9)=504
Nên x thuộc {0;504;1008;1512;...}
Mà x<1200 nên x thuộc {0;504;1008}
@kurumi,
Lần sau bạn nhớ ghi Tham Khảo phía trước mỗi câu trả lời được bạn copy, trích, tham khảo, sao chép từ trang web khác, người khác mà không phải của bạn nhé!
\(3x^2-75=0\)
\(3\left(x^2-25\right)=0\)
\(x^2-25^2=0\)
\(\left(x-5\right)\left(x+5\right)=0\)
\(\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Đây là toán nâng cao chuyên đề lập số theo điều kiện cho trước, cấu trúc thi chuyên, thi học sinh giỏi các cấp thi Violympic. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Số có hai chữ số cần tìm có dạng: \(\overline{ab}\)
Khi thêm hai chữ số vào số cần tìm ta được số mới là: \(\overline{abcd}\)
Theo bài ra ta có:
\(\overline{abcd}\) - \(\overline{ab}\) = 2010
\(\overline{ab}\) \(\times\) 100 + \(\overline{cd}\) - \(\overline{ab}\) = 2010
(\(\overline{ab}\) \(\)\(\times\) 100 - \(\overline{ab}\)) + \(\overline{cd}\) = 2010
\(\overline{ab}\) \(\times\) (100 - 1) + \(\overline{cd}\) = 2010
\(\overline{ab}\) \(\times\) 99 + \(\overline{cd}\) = 2010
\(\overline{ab}\) = \(\dfrac{2010-\overline{cd}}{99}\) = 20 + \(\dfrac{30-\overline{cd}}{99}\)
30 - \(\overline{cd}\) ⋮ 99 vậy 30 - \(\overline{cd}\) = 0 suy ra \(\overline{cd}\) = 30
\(\overline{ab}\) = 20 + \(\dfrac{30-30}{99}\) = 20 + 0 = 20
Vậy số có hai chữ số cần tìm là 20; 2 chữ số viết thêm vào bên phải là 3 và 0
ΔABC vuông tại A nên ta có:
\(sinB=\dfrac{AC}{BC}\\ =>AC=BC\cdot sinB=8\cdot sin60^o=4\sqrt{3}\left(cm\right)\)
Áp dụng định lý Pythagore cho tam giác ABC ta có:
\(BC^2=AC^2+AB^2\\ =>AB=\sqrt{BC^2-AC^2}\\ =>AB=\sqrt{8^2-\left(4\sqrt{3}\right)^2}=4\left(cm\right)\)