Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N = x² - 2xy + 3y² - 4y + 2023
= (x² - 2xy + y²) + (2y² - 4y) + 2023
= (x - y)² + 2(y² - 2y + 1) + 2021
= (x - y)² + 2(y - 1)² + 2021
Do (x - y)² ≥ 0 với mọi x, y ∈ R
⇒ (y - 1)² ≥ 0 với mọi y ∈ R
⇒ (x - y)² + 2(y - 1)² ≥ 0 với mọi x, y ∈ R
⇒ (x - y)² + 2(y - 1)² + 2021 > 0 với mọi x, y ∈ R
Vậy N luôn dương với mọi x, y ∈ R
2xy - 4x + 5y - 10
= (2xy - 4x) + (5y - 10)
= 2x(y - 2) + 5(y - 2)
= (y - 2)(2x + 5)
Lời giải:
$x^2-6x+3=4y^2$
$\Leftrightarrow (x^2-6x+9)-6=4y^2$
$\Leftrightarrow (x-3)^2-6=4y^2$
$\Leftrightarrow 6=(x-3)^2-4y^2=(x-3)^2-(2y)^2=(x-3-2y)(x-3+2y)$
Ta thấy: $x-3-2y+(x-3+2y)=2(x-3)$ chẵn nên $x-3-2y, x-3+2y$ có cùng tính chẵn lẻ.
Mà tích $(x-3-2y)(x-3+2y)=6=1.6=6.1=2.3=3.2$ đều là các thừa số khác tính chẵn lẻ
$\Rightarrow$ không tồn tại $x,y$ nguyên thỏa mãn đề.
\(\Leftrightarrow x\left(x+y\right)+2022\left(x+y\right)+x+2023=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+2022\right)+x+2022+1=0\)
\(\Leftrightarrow\left(x+2022\right)\left(x+y+1\right)=-1\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2022=1\\x+y+1=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x+2022=-1\\x+y+1=1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-2021\\y=2019\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2023\\y=2023\end{matrix}\right.\end{matrix}\right.\)
a) - Thị trường Thái Lan cung cấp lượng tinh bột sắn cho Đài Loan trong tháng 9 nhiều nhất
- Thị trường Trung Quốc cung cấp lượng tinh bột sắn cho Đài Loan trong tháng 9 ít nhất
b) 9,9%
a) Để M xác định thì \(\left\{{}\begin{matrix}3x\ne0\\x+1\ne0\\2-4x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
Khi đó: \(M=\left(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\right):\dfrac{2-4x}{x+1}-\dfrac{3x-x^2+1}{3x}\)
\(M=\left[\dfrac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\dfrac{2\cdot3x}{3x\left(x+1\right)}-\dfrac{3\cdot3x\left(x+1\right)}{3x\left(x+1\right)}\right]\cdot\dfrac{x+1}{2-4x}+\dfrac{x^2-3x-1}{3x}\)
\(M=\dfrac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}\cdot\dfrac{x+1}{2-4x}+\dfrac{x^2-3x-1}{3x}\)
\(M=\dfrac{-8x^2+2}{3x}\cdot\dfrac{1}{2\left(1-2x\right)}+\dfrac{x^2-3x-1}{3x}\)
\(M=\dfrac{-2\left(4x^2-1\right)}{3x\cdot2\left(1-2x\right)}+\dfrac{x^2-3x-1}{3x}\)
\(M=\dfrac{-\left(2x-1\right)\left(2x+1\right)}{-3x\cdot\left(2x-1\right)}+\dfrac{x^2-3x-1}{3x}\)
\(M=\dfrac{2x+1}{3x}+\dfrac{x^2-3x-1}{3x}\)
\(M=\dfrac{x^2-x}{3x}\)
\(M=\dfrac{x\left(x-1\right)}{3x}\)
\(M=\dfrac{x-1}{3}\)
Vậy \(M=\dfrac{x-1}{3}\) với \(x\ne0;x\ne-1;x\ne\dfrac{1}{2}\).
b) Để \(M=2006\) thì \(\dfrac{x-1}{3}=2006\)
\(\Leftrightarrow x-1=6018\)
\(\Leftrightarrow x=6019\left(tmdk\right)\)
Vậy \(M=2006\) khi \(x=6019\).
a, 6\(x^2\) - (2\(x\) - 3).(3\(x\) + 2) = 1
6\(x^2\) - (6\(x^2\) + 4\(x\) - 9\(x\) - 6) = 1
6\(x^2\) - 6\(x^2\) - 4\(x\) + 9\(x\) + 6 = 1
(6\(x^2\) - 6\(x^2\)) + (9\(x\) - 4\(x\)) + 6 = 1
5\(x\) + 6 = 1
5\(x\) = 1 - 6
5\(x\) = -5
\(x\) = - 5 : 5
\(x\) = - 1
b, (\(x\) + \(\dfrac{1}{2}\))2 - (\(x\) + \(\dfrac{1}{2}\)).(\(x\) + 6) = 8
\(x^2\) + \(x\) + \(\dfrac{1}{4}\) - (\(x^2\) + 6\(x\) + \(\dfrac{1}{2}\)\(x\) + 3) = 8
\(x^2\) + \(x\) + \(\dfrac{1}{4}\) - \(x^2\) - 6\(x\) - \(\dfrac{1}{2}\)\(x\) - 3 = 8
(\(x^2\) - \(x^2\)) + (\(x\) - 6\(x\) - \(\dfrac{1}{2}\)\(x\)) - ( 3 - \(\dfrac{1}{4}\)) = 8
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{11}{4}\) = 8
\(\dfrac{11}{2}\)\(x\) = - 8 - \(\dfrac{11}{4}\)
\(\dfrac{11}{2}\)\(x\) = - \(\dfrac{43}{4}\)
\(x\) = \(\dfrac{-43}{4}\) : \(\dfrac{11}{2}\)
\(x\) = \(\dfrac{-43}{22}\)
Lời giải:
$5x^2+5y^2+8xy-2x+2y+2=0$
$\Leftrightarrow 4(x^2+y^2+2xy)+(x^2-2x+1)+(y^2+2y+1)=0$
$\Leftrightarrow 4(x+y)^2+(x-1)^2+(y+1)^2=0$
Ta thấy: $(x+y)^2\geq 0; (x-1)^2\geq 0; (y+1)^2\geq 0$ với mọi $x,y$
Do đó để tổng của chúng bằng $0$ thì:
$(x+y)^2=(x-1)^2=(y+1)^2=0$
$\Rightarrow x=1; y=-1$
Khi đó:
$M=0^2+(1-2)^{2024}+(-1+1)^{2025}=0+1+0=1$