Giải phương trình :
- (x+1)3-(x+3)3=-56
- (5x-7)3+(9+3x)3=(2+8x)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Loại toán này nếu nắm được cách thì đơn giản lắm! Bạn chỉ cần thay tất cả số 1999 thành abc rồi rút gọn thôi!
\(\frac{1999a}{ab+1999a+1999}+\frac{b}{bc+b+1999}+\frac{c}{ac+c+1}\)
Mk thay rồi rút gọn luôn nha
\(=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac+c+1}{ac+c+1}=1\)
Nếu đề bài là abc=1 thì bạn giữ lại một trong 3 đừng thay số rồi làm như trên là OK
a) \(\frac{x^2-2x+2}{x^2+x+1}-\frac{x^2}{x^2+x+1}=\frac{3}{\left(x^4+x^2+1\right)x}\)
\(\Leftrightarrow\frac{x^2-2x+2}{x^2-x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)-\frac{x^2}{x^2+x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)\(=\frac{3}{\left(x^4+x^2+1\right)x}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Leftrightarrow x\left(x^2-2x+2\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)-x^3\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Rightarrow x=\frac{3}{2}\)
b) làm tương tự nhé
a) \(x^2+5y^2+2xy-4x-8y+2015\)
\(=x^2+2xy+y^2+4y^2-4x-8y+2015\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+4y^2-4y+2011\)
\(=\left(x+y\right)^2-2\cdot\left(x+y\right)\cdot2+2^2+\left(2y\right)^2-2\cdot2y\cdot1+1^2+2010\)
\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-2=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy.....
b) \(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)
\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)
\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)
\(=\frac{3}{x^2+1}\le\frac{3}{1}=3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy....
\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)
\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)
\(\text{Giải}\)
\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)
a, A xác định
\(\Leftrightarrow3x^3-19x^2+33x-9\ne0\)
\(\Leftrightarrow3x^3-x^2-18x^2+6x+27x-9\ne0\)
\(\Leftrightarrow x^2\left(3x-1\right)-6x\left(3x-1\right)+9\left(3x-1\right)\ne0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)^2\ne0\Leftrightarrow\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne3\end{cases}}\)
b, \(\frac{3x^3-14x^2+3x+36}{3x^2-19x^2+33x-9}=\frac{3x^2\left(x-3\right)-5x\left(x-3\right)-12\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}\)
\(=\frac{\left(3x^2-5x-12\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}=\frac{\left(3x+4\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{3x+4}{3x-1}\)
\(A=0\Leftrightarrow\frac{3x+4}{3x-1}=0\Leftrightarrow3x+4=0\Leftrightarrow x=-\frac{4}{3}\) (thỏa mãn ĐKXĐ)
c, \(A=\frac{3x+4}{3x-1}=1+\frac{5}{3x-1}\in Z\Rightarrow5⋮\left(3x-1\right)\)
\(\Rightarrow3x-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-\frac{4}{3};0;\frac{2}{3};2\right\}\)
Mà \(x\in Z,x\ne\left\{\frac{1}{3};3\right\}\Rightarrow x\in\left\{0;2\right\}\)
Bài của Hùng rất thông minh
Đang định có cách khác mà dài hơn cách Hùng nên thui
^^ 2k5 kết bạn nhé
bạn đặt mỗi biểu thức = 1 số bình phương ví dụ là x^2
ở câu a bn đặt xong nhân 4 lên sau đó biến đổi về 1 hằng đẳng thức
câu b thì đưa chữ sang 1 vế số sang 1 vế
câu c làm tương tự câu a
\(\left(x+1\right)^3-\left(x+3\right)^3=-56\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3+9x^2+27x+27\right)=-56\)
\(\Leftrightarrow-6x^2-24x-26=-56\)
\(\Leftrightarrow-6x^2-24x+30=0\Leftrightarrow-6\left(x^2+4x-5\right)=0\)
\(\Leftrightarrow x^2+4x-5=0\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Tập nghiệm: \(S=\left\{1;-5\right\}\)