Gia su a, b, c la cac so duong, chung minh rang: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{x}-\sqrt{x+1}-\sqrt{x+4}+\sqrt{x+9}=0;ĐK:x\ge4\)
\(\Leftrightarrow\sqrt{x}+\sqrt{x+9}=\sqrt{x+1}-\sqrt{x+4}\)
\(\Leftrightarrow2x+9+2\sqrt{x^2+9x}=2x-5+2\sqrt{x^2-5x+4}\)
\(\leftrightarrow14+2\sqrt{x^2+9x}=2\sqrt{x^2-5x+4}\leftrightarrow7+\sqrt{x^2+9x}=\sqrt{x^2-5x+4}\)
\(\leftrightarrow49+14\sqrt{x^2+9x}+x^2+9x=x^2-5x+4\)
\(\leftrightarrow14\sqrt{x^2+9x}=-14x-45\)
\(\leftrightarrow\hept{\begin{cases}196.x^2+9x=196x^2+1260x+2025\\-14x-45\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}504x=2025\\x\le\frac{-45}{14}\end{cases}\leftrightarrow x=\frac{225}{56}}\) loại
-> PT vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
áp dụng bđt bunyakovsky cho 2 bộ số (1;1) và (căn x;căn y) ta có: (1^2+1^2)((căn x)^2 +(căn y)^2)>=(1.căn x=1.căn y)^2
<=>2(x+y)>=(căn x+căn y)^2
<=>A=căn x+căn y<=căn(2(x+y))=căn(2.1)=căn 2
đẳng thức xảy ra <=> (căn x)/1=(căn y)/1 và x+y=1<=>x=y=1/2
vậy maxA=căn 2<=>x=y=1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo mình thì đề thiếu: \(abc=1\)Mình sẽ giải theo dữ kiện này.
Đặt \(a=x^3;b=y^3;c=z^3\)
Do a;b;c> 0 nên x3;y3;z3>0
Bạn chứng minh bài toán phụ: \(x^3+y^3\ge xy\left(x+y\right)\) (*)
Lại có abc=1=> (xyz)3=1=>xyz=1
Áp dụng (*), ta có:
\(\frac{1}{a+b+1}=\frac{1}{x^3+y^3+xyz}\le\frac{1}{xy\left(x+y+z\right)}=\frac{z}{x+y+z}\)
Tương tự, ta có: \(\frac{1}{b+c+1}\le\frac{x}{x+y+z}\)
\(\frac{1}{c+a+1}\le\frac{y}{x+y+z}\)
\(\Rightarrow\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\le1\)
Vậy..........
Cách trình bày của mình có thể chưa tốt, bạn thông cảm
dùng bđt cauchy chứng minh biểu thức trên >=2 rồi chứng minh dấu = không xảy ra