cho 3 số a,b,c thỏa mãn abc =2005.Tính P=(2019a/ab+2019a+2019)+(b/bc +b +2079)+(c/ac+c+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm a thôi nha :D
a) \(C=\left(\frac{x^2+x}{x^2-2x+1}\right):\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{x+1}{x}-\frac{1}{-\left(x-1\right)}+\frac{2-x^2}{x\left(x+1\right)}\right]\)
\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x\left(x-1\right)}\right]\)
\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{x+1}{x}+\frac{x+2-x^2}{x\left(x-1\right)}\right]\)
\(C=\frac{x\left(x+1\right)}{x^2-2x+1}.\left[\frac{\left(x-1\right)\left(x+1\right)+x+2-x^2}{x\left(x-1\right)}\right]\)
\(C=\frac{x+1}{x^2-2x+1}.\frac{x^2-1+x+2-x^2}{x-1}\)
\(C=\frac{x+1}{\left(x^2-2x+1\right)}.\frac{1.x}{x-1}\)
\(C=\frac{\left(x+1\right)^2}{x^3-x^2-2x^2+2x+x-1}\)
\(C=\frac{x^2+2x+1}{x^3-3x^2+3x-1}\)
a)\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x+1}{x}-\frac{1}{-\left(x-1\right)}+\frac{-x^2+2}{x.\left(x-1\right)}\right]\)
\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x^2-1}{x.\left(x-1\right)}+\frac{x}{x.\left(x-1\right)}+\frac{-x^2+2}{x.\left(x-1\right)}\right]\)
\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x^2-1+x-x^2+2}{x.\left(x-1\right)}\right]\)
\(C=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right]:\left[\frac{x+1}{x.\left(x-1\right)}\right]=\left[\frac{x.\left(x+1\right)}{\left(x-1\right)^2}\right].\left[\frac{x.\left(x-1\right)}{x+1}\right]=\frac{x.\left(x+1\right).x}{\left(x-1\right).\left(x+1\right)}=\frac{x^2}{x-1}\)
b)\(\text{Để B nguyên }\Rightarrow x^2⋮x-1\)
\(x^2=x^2-1+1=\left(x-1\right).\left(x+1\right)+1\)
\(\Rightarrow\text{Để }x^2⋮x-1\Rightarrow1⋮x-1\Rightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\Rightarrow x\in\left\{2;0\right\}\)
\(x^2+2x+2\left|x+1\right|-2=0\)
\(\Leftrightarrow x^2+2x+1+2\left|x+1\right|-3=0\)
\(\Leftrightarrow\left(x+1\right)^2+2\left|x+1\right|=3\)
Xét các t/h là ra thôi bạn
Gọi x là sản phẩm người đó được giao làm (x>0)
thời gian người đó hoàn thành công việc theo kế hoạch là: x/35 (ngày)
Thời gian thực tế người đó đã làm là: x+1/47 (ngày)
Do đó hoàn thành sớm 1 giờ nên ta có PT: (x/35)-(x+1/47)=1
<=>(47x/1645)-[35(x+1)/1645]=1645/1645
<=>47x-35x-35=1645 <=>12x=1680
<=>x=140
Vậy người đó được giao làm 140
ĐKXĐ : x \(\ne\)-3 ; x \(\ne\)a
\(\frac{x+a}{x+3}+\frac{x-3}{x-a}=2\)( 1 )
\(\frac{x^2-a^2+x^2-9}{\left(x+3\right)\left(x-a\right)}=2\)
\(\frac{2x^2-a^2-9}{x^2+3x-ax-3a}=2\)
\(2x^2-a^2-9=2x^2+6x-2ax-6a\)( 2 )
\(2ax-6x=a^2-6a+9\)
\(2x\left(a-3\right)=\left(a-3\right)^2\)
+) nếu a = 3 thì phương trình ( 2 ) có dạng 0x = 0 ( vô số nghiệm )
Để nghiệm tùy ý này là nghiệm của ( 1 ) thì x \(\ne\)\(\pm3\)
+) nếu a \(\ne\)3 thì phương trình ( 2 ) có nghiệm x = \(\frac{\left(a-3\right)^2}{2\left(a-3\right)}=\frac{a-3}{2}\)
Để nghiệm này là nghiệm của ( 1 ) thì ta có :
\(\frac{a-3}{2}\ne-3\)và \(\frac{a-3}{2}\ne a\), tức là a \(\ne\)-3
Vậy nếu a \(\ne\)\(\pm3\)thì x = \(\frac{a-3}{2}\)là nghiệm của ( 1 )
Kết luận : nếu a = 3 thì phương trình đã cho có nghiệm tùy ý x \(\ne\)\(\pm3\)
nếu a \(\ne\)\(\pm3\)thì phương trình đã cho có 1 nghiệm x = \(\frac{a-3}{2}\)
nếu a = -3 thì phương trình đã cho vô nghiệm
\(\Leftrightarrow x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^4-4x^3+4x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x^2-4x+1\right)=0\)
- Khi x - 1 = 0 thì x = 1
- Khi x + 1 = 0 thì x = -1
- Khi \(x^2-4x+1=0\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{cases}}\)
Pt có tậo nghiệm là: \(S=\left\{1;-1;\sqrt{3}+2;-\sqrt{3}+2\right\}\)
\(5^6-25^3=\left(5^2\right)^3-25^3=25^3-25^3=0\)
\(\Rightarrow\frac{\left(1^6-29^3\right)\left(2^6-28^3\right)\left(3^6-27^3\right)\left(4^6-26^3\right)\left(5^6-25^3\right).....\left(10^6-20^3\right)}{\left(1^6+29^3\right)\left(2^6+28^3\right)\left(3^6+27^3\right)\left(4^6+26^3\right)\left(5^6+25^3\right).....\left(10^6+20^3\right)}=0\)