K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

gia su ton 2 so thoa man dk tren

goi 2 so do la a.b

goi c uoc chung >9 

ta co a= ck

         b= cx

khi do k va x phai  la 2 so tu nhien lien tiep

gia su x= k +1

khi do b= ck+c

ma c≥10≥10

suy ra b-a>10 

.........................................trai voi gia thiet

11 tháng 11 2017

\(S=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+.....+\frac{n}{2^n}+......+\frac{2017}{2^{2017}}\)

Với n > 2 thì \(\frac{n}{2^n}=\frac{n+1}{2^{n-1}}-\frac{n+2}{2^n}\)

\(\frac{n+1}{2^{n-1}}=\frac{n+1}{2^n:2}=\frac{n+1}{\frac{2^n}{2}}=\frac{2^{\left(n+1\right)}}{2^n}\)

\(\frac{n+1}{2^{n-1}}-\frac{n+2}{2^n}=\frac{2^{n+2}}{2^n}-\frac{n+2}{2^n}\)

\(=\frac{2^{n+2}-n-2}{2^n}\)

\(=\frac{n}{2^n}\)

\(\Leftrightarrow S=\frac{1}{2}+\left(\frac{2+1}{2^{2-1}}-\frac{2+2}{2^2}\right)+.....+\frac{2016+1}{2^{2015}}-\frac{2018}{2^{2016}}\)

\(=\frac{2017+1}{2^{2016}}-\frac{2019}{2^{2017}}\)

\(S=\frac{1}{2}+\frac{3}{2}-\frac{2019}{2017}\)

\(S=2-\frac{2019}{2017}\)

\(\Leftrightarrow S=2-\frac{2019}{2017}< 2\)

Hay \(S< 2\)

26 tháng 10 2017

Bài 8:

Cho các số thực a,b,c,x,y thỏa mãn ax−by=√3ax−by=3.

Tìm GTNN của F=a2+b2+x2+y2+bx+ayF=a2+b2+x2+y2+bx+ay

Lời giải:

Sử dụng giả thiết ax−by=√3ax−by=3 ta có:

(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3

Áp dụng bất đẳng thức CauchyCauchy , suy ra:

a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3

Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by

Ta có:

(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9

⇒2√x2+3+x≥3⇒2x2+3+x≥3

Vậy MinT=3MinT=3

Bài 11:Cho các số a,b,c không âm không đồng thời bằng không. Chứng minh rằng;

∑2a2−bcb2−bc+c2≥3∑2a2−bcb2−bc+c2≥3

Không mất tính tổng quát, ta có thể giả sử bb là số nằm giữa aa và cc

BĐT đã cho tương đương với

∑2a2+(b−c)2b2−bc+c2≥6∑2a2+(b−c)2b2−bc+c2≥6

Áp dụng BĐT Cauchy-Schwarz, ta có

∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a

∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a

Do đó ta chỉ cần chứng minh

(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)

Ta có 

b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)

≥a2(b−c)2+c2(a−b)2≥a2(b−c)2+c2(a−b)2

Suy ra 

2b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)22b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)2

⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a

Do đó ta chỉ còn phải chứng minh 

(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a

⇔∑a4+abc∑a≥2∑a2b2⇔∑a4+abc∑a≥2∑a2b2

BĐT này hiển nhiên đúng theo BĐT Schur

∑a4+abc∑a≥∑ab(a2+b2)∑a4+abc∑a≥∑ab(a2+b2)

Và BĐT AM-GM

∑ab(a2+b2)≥2∑a2b2∑ab(a2+b2)≥2∑a2b2

Kết thúc chứng minh 

Đẳng thức xảy ra khi a=b=ca=b=c hoặc a=ba=b, c=0c=0 và các hoán vị.

26 tháng 10 2017

Bạn leminhduc tự hỏi tự trả lời à

29 tháng 6 2021

12632t54s jsd

26 tháng 10 2017

a) \(x^5+x^3+x^2+1=\left(x^5+x^2\right)+\left(x^3+1\right)\)

     \(=x^2\left(x^3+1\right)+\left(x^3+1\right)\)

       \(=\left(x^3+1\right)\left(x^2+1\right)\)

Vậy phép chia đa thức trên cho \(x^3+1\) bằng \(x^2+1\)

b) \(x^2-5x+6=x^2-2x-3x+6\)

      \(=\left(x^2-2x\right)-\left(3x-6\right)\)

      \(=x\left(x-2\right)-3\left(x-2\right)\)

      \(=\left(x-2\right)\left(x-3\right)\)

Vậy phép chia đa thức trên cho \(x-3\) được thương là \(x-2\)

26 tháng 10 2017

GIẢI : ta đặt : x/2=x/3=x/5 = K
=> x=2K ; y=3K ;z =5k 
vì x.y.z = 810
=> 2K. 3K.5K=810
=> K^3 = 27
=> K=3
suy ra : x= 3.2=6
y= 3.3=9
z= 3.5=15

26 tháng 10 2017

Đặt x = 2k; y=3k và z=5k  (1)

Ta có: 2k.3k.5k = xyz

             30k3     = 810

  =>        x3         = 27

  =>         x          = 3

Thế vào (1) ta được: x = 3.2 = 6

                                   y = 3.3 = 9

                                    z = 3.5 = 15

Vậy x=6;y=9;z=15