Cho \(x;y>0\) và \(3x+y=1\)\(.\)
Tìm \(A_{Min}=\frac{1}{x}+\frac{1}{\sqrt{xy}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần lượt áp dụng bất đẳng thức Cô - si có 3 và 4 số, ta có:
\(\frac{a}{18}+\frac{b}{24}+\frac{2}{ab}\ge3.\sqrt[3]{\frac{a}{18}.\frac{b}{24}.\frac{2}{ab}}=\frac{1}{2}\)
\(\frac{a}{9}+\frac{c}{6}+\frac{2}{ac}\ge3.\sqrt[3]{\frac{a}{9}.\frac{c}{6}.\frac{2}{ac}}=1\)
\(\frac{b}{16}+\frac{c}{8}+\frac{2}{bc}\ge3.\sqrt[3]{\frac{b}{16}.\frac{c}{8}.\frac{2}{bc}}=\frac{3}{4}\)
\(\frac{a}{9}+\frac{b}{12}+\frac{c}{6}+\frac{8}{abc}\ge4.\sqrt[4]{\frac{a}{9}.\frac{b}{12}.\frac{c}{6}.\frac{8}{abc}}=\frac{4}{3}\)
\(\frac{13a}{18}+\frac{13b}{24}\ge2\sqrt{\frac{13a}{18}.\frac{13b}{24}}\ge2\sqrt{\frac{13.13.12}{18.24}}=\frac{13}{3}\)
\(\frac{13c}{24}+\frac{13b}{48}\ge2\sqrt{\frac{13c}{24}.\frac{13b}{48}}\ge2\sqrt{\frac{13.13.8}{24.48}}=\frac{13}{6}\)
Cộng vế với vế ta có:
\(a+b+c+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{8}{abc}\ge\frac{121}{12}\)
Gọi thời gian để ô tô cách đều xe đạp và xe máy kể từ lúc ô tô xuất phát là: x (giờ, x > 0)
Khi đó xe đạp đi được đoạn đường dài: 15(2 + x) (km)
Xe máy đi được đoạn đường dài: 35(1 + x) (km)
Ô tô đi được đoạn đường dài: 55x (km)
Do ô tô cách đều xe đạp và xe máy nên ta có phương trình:
\(\text{35(1 + x) - 55x = 55x - 15(2 + x)}\)
\(\Leftrightarrow-60x=-60\)
\(\Leftrightarrow x=1\left(tmđk\right)\)
Vậy sau 1 giờ thì ô tô cách đều xe đạp và xe máy.
\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=\)\(b\left(a-c\right)\left(a+c-b\right)^2\)
\(\Leftrightarrow\)\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2-b\left(a-c\right)\left(a+c-b\right)^2=0\)
Đặt:
\(\begin{cases}a+b-c=x\\b+c-a=y\\a+c-b=z\end{cases}\)\(\hept{\Leftrightarrow\begin{cases}a=\frac{x+z}{2}\\b=\frac{x+y}{2}\\c=\frac{y+z}{2}\end{cases}}\)
\(\Leftrightarrow\)\(\frac{x+z}{2}\left(\frac{x+y}{2}-\frac{y+z}{2}\right)y^2+\frac{y+z}{2}\left(\frac{x+z}{2}-\frac{x+y}{2}\right)x^2-\frac{x+y}{2}\left(\frac{x+z}{2}-\frac{y+z}{2}\right)z^2=0\)
\(\Leftrightarrow\frac{x+z}{2}\times\frac{x-z}{2}\times y^2+\frac{z+y}{2}\times\frac{z-y}{2}\times x^2-\frac{x+y}{2}\times\frac{x-y}{2}\times z^2=0\)
\(\Leftrightarrow\frac{1}{4}\left(x+z\right)\left(x-z\right)y^2+\frac{1}{4}\left(z+y\right)\left(z-y\right)x^2-\frac{1}{4}\left(x+y\right)\left(x-y\right)z^2=0\)
\(\Leftrightarrow\frac{1}{4}\left[\left(x^2-z^2\right)y^2+\left(z^2-y^2\right)x^2\right]-\frac{1}{4}\left(x^2-y^2\right)z^2=0\)
\(\Leftrightarrow\frac{1}{4}\left(x^2y^2-z^2y^2+x^2z^2-x^2y^2\right)-\frac{1}{4}\left(x^2-y^2\right)z^2=0\)
\(\Leftrightarrow\frac{1}{4}\left(x^2-y^2\right)z^2-\frac{1}{4}\left(x^2-y^2\right)z^2=0\)
Vậy \(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=\)\(b\left(a-c\right)\left(a+c-b\right)^2\)
( Gọi x (km/h) là vận tốc người thứ hai. y (km) là chiều dài quãng đường đua.
Điều kiện: x 3, y > 0
Ta có: x + 15 (km/h) là vận tốc môtô thứ nhất. x – 3 (km/h) là vận tốc mô tô người thứ ba
Đổi 12 phút = 1/5 giờ 3 phút = 1/20 giờ
Theo đề bài ta có hệ phương trình trên và Phương pháp giải hệ phương trình trên.
Kết quả: x = 75, y = 90
Vậy vận tốc mô tô thứ nhất là: 90 km/h; vận tốc mô tô thứ hai là 75 km/h; vận tốc mô tô thứ ba là 72 km/h
Em tham khảo tại đây nhé.
Câu hỏi của Phạm Minh Tuấn - Toán lớp 8 - Học toán với OnlineMath
Áp dụng bđt svacxơ, ta có
\(A\ge\frac{4}{x+\sqrt{xy}}\)
mà \(\sqrt{xy}\le\frac{x+y}{2}\Rightarrow x+\sqrt{xy}\le\frac{3}{2}x+\frac{1}{2}y=\frac{1}{2}\)
=> \(A\ge\frac{1}{8}\)
dấu = xảy ra <=> x=y=1/4
nguồn :Quân Minh
nhok cho chị mượn chỗ lát
Áp dụng bđt bu nhi a ta có \(\left(2x^2+3xy+4y^2\right)\left(2+3+4\right)\ge\left(2x+3.\sqrt{xy}+4y\right)^2\)