\(\text{Lúc 8 giờ; An rời khỏi nhà mình để đi đến nhà Bình với vận tốc 4 km/h. Lúc 8 giờ 20 phút Bình cũng rời nhà mình đẻ đi đến nhà An với vận tốc 3 km/h . An gặp bình trên đường rồi cả hai cùng đi về nhà bình , Sau đó An trở về nhà mình . Khi về đến nhà An tính ra quãng đường mình đi gấp 4 lần quãng đường Bình đi . Hãy tính khoảng cách từ nhà an đến nhà Bình}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm của AC và BD. Theo tính chất hình bình hành thì O là trung điểm AC và BD.
Gọi H, I, J, L lần lượt là chân các đường cao hạ từ D, O, C, B xuống đường thẳng xy.
Ta thấy ngay DH // OI // CJ // KB.
Xét tam giác ACJ có O là trung điểm AC, OI // CJ nên OI là đường trung bình tam giác hay CJ = 2OI. (1)
Xét hình thang vuông HDBK có O là trung điểm BD, OI // DH // BK nên OI là đường trung bình hình thang.
Vậy thì \(DH+BK=2OI\) (2)
Từ (1) và (2) suy ra CJ = DH + BK.
Suy ra \(\frac{1}{2}CJ.AE=\frac{1}{2}HD.AE+\frac{1}{2}BK.AE\) hay \(S_{ACE}=S_{ADE}+S_{ABE}\)
1
Ta có do \(K\in CD;CD//AB\Rightarrow\widehat{K1}=\widehat{A2}\)
Mà \(\widehat{A2}=\widehat{A1}\)(AK LÀ PHÂN GIÁC)
\(\Rightarrow\widehat{K1}=\widehat{A1}\Rightarrow\Delta ADK\)cân tại D => AD=DK
Tương tự ta cm được BC=CK
=> AD+BC=DK+CK
Mà K nằm giữa C và D nên AD+BC=DK+CK=DC(đpcm)
a,\(x\left(x+1\right)\left(x^2+x+2\right)\)
\(=\left(x^2+x\right)\left(x^2+x+2\right)\)
ĐẶT X^2+X=A\(\Rightarrow\left(x^2+x\right)\left(x^2+x+2\right)=a\left(a+2\right)=42\)
\(\Rightarrow a=\pm1,\pm2,\pm3,\pm6,\pm7,\pm42\)
SUY RA TÌM ĐC X
b,
a) \(x\left(x+1\right)\left(x^2+x-2\right)=48\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=48\)
Đặt \(x^2+x=t\Rightarrow t\left(t-2\right)=48\Leftrightarrow t^2-2t-48=0\Leftrightarrow\orbr{\begin{cases}x=-8\\x=6\end{cases}}\)
Với x = -8, ta có: \(x^2+x=-8\Leftrightarrow x^2+x+8=0\) (Vô nghiệm)
Với x = 6, ta có: \(x^2+x=6\Leftrightarrow x^2+x-6=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{-3;2\right\}\)
b) \(\left(x-1\right)^3+\left(2x+3\right)^3=27x^3+8\)
\(\Leftrightarrow\left(x-1+2x+3\right)\left[\left(x-1\right)^2-\left(x-1\right)\left(2x+3\right)+\left(2x+3\right)^2\right]=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(\Leftrightarrow\left(3x+2\right)\left(3x^2+9x+13\right)=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(\Leftrightarrow\left(3x+2\right)\left(3x^2+9x+13-9x^2+6x-4\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(-6x^2+15x+9\right)=0\)
TH1: \(3x+2=0\Leftrightarrow x=-\frac{2}{3}\)
TH2: \(-6x^2+15x+9=0\Leftrightarrow\left(x-3\right)\left(-6x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{2}\end{cases}}\)
Quy đồng rồi phân tích nhân tử bình thường đi
\(\left(x-1\right)\left(x-ab-bc-ca\right)\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)
xét hai trường hợp:
nếu x>0 thì ta có phương trình :
3x - x=6
<=>x=3(thỏa mãn x>0)
nếu x<0 ta cũng có phương trình:
-3x -x = 6
<=> x=\(-\frac{3}{2}\)(thỏa mãn x<0>
Tập nghiệm của phương trình là : \(S=\left(3;\frac{-3}{2}\right)\)
| 3x | - x = 6
=> | 3x | > 0
x > 0
=> 3x > 0
=> | 3x | = 3x
=> 3x - x = 6
2x = 6
x = 6 : 2
x = 3
dự đoán của chúa Pain a=b=c=1
ta có \(ab^2\le\frac{\left(a+B^2\right)^2}{4}:bc^2\le\frac{\left(b+c^2\right)^2}{4}:ca^2\le\frac{\left(c+a^2\right)^2}{4}.\)
\(ab^2+bc^2+ca^2\le\frac{\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ac+c^2\right)}{4}\)
\(ab^2+bc^2+ca^2\le\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(ab+bc+ca\right)\)
ta có \(xy+yz+zx\le x^2+y^2+z^2\left(cosi\right)\Leftrightarrow ab+bc+ca\le a^2+b^2+c^2=3\)luôn đúng
thay số ta được \(ab^2+bc^2+ca^2\le\frac{3}{2}+\frac{3}{2}=3\)
\(ab^2+bc^2+ca^2-abc\le3-abc\)
có \(abc\ge\frac{\left(a+b+c\right)^3}{27}..."-abc"\ge\rightarrow\le\) ( -abc dấu > thành dấu < cùng dấu thay vào được )
\(ab^2+bc^2+ca^2-abc\le3-\frac{\left(a+b+C\right)^3}{27}\)
ta có \(a^2+1\ge2a\left(cosi\right)\)
\(b^2+1\ge2b\)
\(c^2+1\ge2c\)
\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
có (a^2+b^2+c^2)=3 (gt) \(\Rightarrow3+3\ge2\left(a+b+C\right)\Rightarrow3\ge a+b+C\Rightarrow-3\le-\left(a+b+c\right)\)
cùng dấu < thay vào ta được
\(ab^2+bc^2+ca^2-abc\le3-\frac{\left(3\right)^3}{27}=3-1=2\)
\(\Rightarrow ab^2+bc^2+ca^2-abc\le2\)
cho chúa Pain xin cái tính :)
Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Số dư của phép chia đa thức f(x) cho x4 + x2 + 1 là đa thức có bậc thấp hơn, tức là \(ax^3+bx^2+cx+d\)
Ta có \(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)g\left(x\right)+\left(x^2+x+1\right)\left(ax+b-a\right)+\left(c-b\right)x+d+a-b\)
\(=\left(x^2+x+1\right)\left[\left(x^2-x+1\right)g\left(x\right)+ax+b-a\right]+\left(c-b\right)x+d+a-b\)
Vậy nên \(\hept{\begin{cases}c-b=-1\\d+a-b=1\end{cases}}\)
Ta cũng có:
\(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)g\left(x\right)+\left(x^2-x+1\right)\left(ax+b+a\right)+\left(c+b\right)x+d-a-b\)
Vậy nên \(\hept{\begin{cases}c+b=3\\d-a-b=5\end{cases}}\)
Từ (1) và (2) ta có: \(\hept{\begin{cases}c-b=-1\\c+b=3\end{cases}}\) và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)
Vậy nên \(\hept{\begin{cases}c=1\\b=2\end{cases}}\) và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow\hept{\begin{cases}d=5\\a=-2\end{cases}}}\)
Vậy thì đa thức dư cần tìm là -2x3 + 2x2 + x + 5
Đổi \(8h20'=8\frac{1}{3}h\)
Gọi khoảng cách từ nhà An tới nhà Bình là x (km, x > 0)
Khi Bình bắt đầu đi thì An đã đi được số ki-lô-mét là: \(\left(8\frac{1}{3}-8\right).4=\frac{4}{3}\left(km\right)\)
Tổng vận tốc của hai bạn là : 4 + 3 = 7 (km)
Thời gian để hai bạn gặp nhau kể từ khi Bình đi là: \(\frac{x-\frac{4}{3}}{7}=\frac{3x-4}{21}\left(h\right)\)
Khi đó quãng đường Bình đi được là: \(3.\frac{3x-4}{21}=\frac{3x-4}{7}\left(km\right)\)
Sau khi hai bạn gặp nhau thì lại quay về nhà Bình nên quãng đường Bình đi là: \(\frac{3x-4}{7}.2=\frac{6x-8}{7}\left(km\right)\)
An đi tới nhà Bình rồi quay lại nhà mình nên quãng đường An đi bằng 2 lần khoảng cách giữa nhà hai bạn và bằng 2x (km)
Theo bài ra ta có phương trình:
\(2x=4.\left(\frac{6x-8}{7}\right)\)
\(\Leftrightarrow14x=24x-32\Leftrightarrow x=3,2\left(km\right)\) (tmđk)
Vậy khoảng cách từ nhà An tới nhà Bình là 3,2 km.
Đổi \(\text{8h20}'\)= \(\frac{25}{3}\) h
Lúc 8h20', quãng đường An đi được là:
\(4.\left(\frac{25}{3}-8\right)=\frac{4}{3}\) (km)
Gọi thời gian An và Bình gặp nhau kể từ lúc Bình xuất phát là x (h)
=> Quãng đường An đi tới điểm gặp nhau kể từ lúc Bình xuất phát là: 4x (km)
Quãng đường Bình đi tới điểm gặp nhau là 3x (km)
=> Quãng đường từ nhà An đến nhà Bình là:
\(\frac{4}{3}+4x+3x=\frac{4}{3}+7x\)(km)
Theo đề, ta thấy quãng đường An đi bằng 2 lần quãng đường từ nhà An đến nhà Bình và quãng đường Bình đi bằng 2 lần quãng đường Bình đi tới điểm gặp nhau.
=> Ta có phương trình:
\(\frac{2\left(\frac{4}{3}+7x\right)}{2.3.x}=4\)
⇔\(\frac{\frac{4}{3}+7x}{6x}=4\)
⇔\(\frac{4}{3}+7x=12x\)
⇔\(12x-7x=\frac{4}{3}\)
⇔\(5x=\frac{4}{3}\)
⇔\(x=\frac{4}{15}\) (h)
=> Quãng đường từ nhà An đến nhà Bình dài:
\(\frac{4}{3}+7\text{×}\frac{4}{15}=3,2\) (km)
Vậy quãng đường từ nhà An đến nhà Bình dài \(\text{3,2}\) km.