Viết các số sau dưới dạng lũy thừa của 2:
1/32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(-27\right)^5:32^3\)
\(=\left[\left(-3\right)^3\right]^5:\left(2^5\right)^3\)
\(=\left(-3\right)^{15}:2^{15}\)
\(=\left(-3:2\right)^{15}\)
\(=\left(-\dfrac{3}{2}\right)^{15}\)
\(\left(-27\right)^5\):\(32^3\)
=-14348907:32768
=-437,8938904
Bài 1
1) -1/4 + 3/4 : 6
= -1/4 + 1/8
= -1/8
2) (-1/6 - 5/13 + 11/12) - (8/13 - 7/6 - 1/3)
= -1/6 - 5/13 + 11/12 - 8/13 + 7/6 + 1/3
= (-1/6 + 7/6) + (-5/13 - 8/13) + (11/12 + 1/3)
= 1 - 1 + 5/4
= 5/4
3) (-2/3)² . 3/5 + √(4/25) : 9/4 - 1,75
= 4/9 . 3/5 + 2/5 . 4/9 - 7/4
= 4/9 . (3/5 + 2/5) - 7/4
= 4/9 - 7/4
= -47/36
Bài 2
1) -1 2/5 - x = 2/3 - 4/5
-7/5 - x = -2/15
x = -7/5 + 2/15
x = -19/15
2) [√(9/64)+ x] - 1 1/2 = -3/4
3/8 + x - 3/2 = -3/4
x = -3/4 - 3/8 + 3/2
x = 3/8
3) 2.3ˣ⁺² + 4.3ˣ⁺¹ = 10.3⁶
3ˣ⁺¹.(2.3 + 4) = 10.3⁶
3ˣ⁺¹ . 10 = 3⁶ . 10
3ˣ⁺¹ = 3⁶
x + 1 = 6
x = 6 - 1
x = 5
(0,8)⁵ : (0,4)⁶
= (4/5)⁵ : (2/5)⁶
= 1024/3125 : 64/15625
= 16 . 5
= 80
\(\left(0,8\right)^5:\left(0,4\right)^6\\ =\left(\dfrac{4}{5}\right)^5:\left(\dfrac{2}{5}\right)^6\\ =\dfrac{1024}{3125}:\dfrac{64}{15625}\\ =16.5\\ =80\)
\(\left(\dfrac{11}{4}\right)^{12}:\left(-\dfrac{11}{4}\right)^{11}\)
\(=\left(-\dfrac{11}{4}\right)^{12}:\left(-\dfrac{11}{4}\right)^{11}\)
\(=\left(-\dfrac{11}{4}\right)^{12-11}\)
\(=\left(-\dfrac{11}{4}\right)^1\)
\(=-\dfrac{11}{4}\)
\(\left(\dfrac{3}{7}\right)^2.\left(-7\right)^4\\ =\left(\dfrac{3}{7}\right)^2.7^4\\ =\left(\dfrac{3}{7}\right)^2.7^2.7^2\\ =9.49\\ =441\)
Vì \(\dfrac{1}{11}>\dfrac{1}{18}>\dfrac{1}{21}>\dfrac{1}{24}>\dfrac{1}{27}>\dfrac{1}{29}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}>\dfrac{1}{4}+\dfrac{1}{11}+\dfrac{1}{18}+\dfrac{1}{21}+\dfrac{1}{24}+\dfrac{1}{27}+\dfrac{1}{29}\)\(\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}=\dfrac{1}{11}.7=\dfrac{7}{11}\)
Ta có:
\(\dfrac{7}{11}=\dfrac{7.5}{11.5}=\dfrac{35}{55};\dfrac{4}{5}=\dfrac{4.11}{5.11}=\dfrac{44}{55}\)
\(Vì\) \(\dfrac{44}{55}>\dfrac{35}{55}\)
\(\Rightarrow\dfrac{4}{5}>\dfrac{7}{11}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{11}+\dfrac{1}{18}+\dfrac{1}{21}+\dfrac{1}{24}+\dfrac{1}{27}+\dfrac{1}{29}< \dfrac{4}{5}\left(đpcm\right)\)
Ta thấy :
\(\dfrac{1}{4}+\dfrac{1}{11}< \dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{18}+\dfrac{1}{21}< \dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{6}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{24}+\dfrac{1}{27}< \dfrac{1}{24}+\dfrac{1}{24}=\dfrac{1}{12}=\dfrac{1}{3}-\dfrac{1}{4}\)
\(\dfrac{1}{29}< \dfrac{1}{20}=\dfrac{1}{4}-\dfrac{1}{5}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{11}+\dfrac{1}{18}+\dfrac{1}{21}+\dfrac{1}{24}+\dfrac{1}{27}+\dfrac{1}{29}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{11}+\dfrac{1}{18}+\dfrac{1}{21}+\dfrac{1}{24}+\dfrac{1}{27}+\dfrac{1}{29}< 1-\dfrac{1}{5}=\dfrac{4}{5}\)
\(\Rightarrow dpcm\)
a) \(a\left(b+1\right)=3\left(a;b\inℤ\right)\)
\(\Rightarrow a;\left(b+1\right)\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(-1;-4\right);\left(1;2\right);\left(-3;-2\right);\left(3;0\right)\right\}\)
b) \(2n+7⋮n+1\left(n\inℤ\right)\)
\(\Rightarrow2n+7-2\left(n+1\right)⋮n+1\)
\(\Rightarrow2n+7-2n-2⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-2;0;-6;4\right\}\)
c) \(xy+x-y=6\left(x;y\inℤ\right)\)
\(\Rightarrow x\left(y+1\right)-y-1+1=6\)
\(\Rightarrow x\left(y+1\right)-\left(y+1\right)=5\)
\(\Rightarrow\left(x-1\right)\left(y+1\right)=5\)
\(\Rightarrow\left(x-1\right);\left(y+1\right)\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-0;-6\right);\left(2;4\right);\left(-4;-2\right);\left(6;0\right)\right\}\)
Xét \(\Delta ADC\) và \(\Delta BCD\) có:
\(AD=BC\left(gt\right)\)
\(\widehat{ADC}=\widehat{BCD}\left(gt\right)\)
Cạnh \(DC\) là cạnh chung
Vậy \(\Delta ADC=\Delta BCD\left(c.g.c\right)\)
\(\Rightarrow\widehat{C1}=\widehat{D1}\) ( 2 góc tưng ứng )
Trong \(\Delta OCB\) ta có: \(\widehat{C1}=\widehat{D1}\left(CMT\right)\)
\(\Rightarrow\Delta OCB\) cân tại \(O\)
\(\Rightarrow OC=OD\) ( cạnh tương ứng ) \(\left(1\right)\)
\(\Rightarrow AC=BD\) ( tính chất hình thang cân )
\(\Rightarrow AO+OC=BO+OD\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(AO=BO\)
Đề bài ra khi chia tử và mẫu ta được số \(0\) \(abc\) nên phân số có dạng:
\(\dfrac{abc}{999}\)
Ta có:
\(\dfrac{abc}{999}=\dfrac{abc}{3^3.37}=\dfrac{abc.37^2}{\left(3.37\right)^2}\)
Vì phân số này bằng lập phương của phân số khác nên \(abc.37^2\)
\(=\left(d.37\right)^3\Rightarrow abc=37d^3\)
Mặt \(\ne\) \(0< abc< 999\Rightarrow37d^3< 999\Rightarrow d^3< 27\)
\(\Leftrightarrow d=3\)
Với \(d=1\) thì \(abc=037\Rightarrow\) phân số cần tìm là: \(\dfrac{037}{999}=\dfrac{1}{27}\)
Với \(d=2\) thi \(abc=296\Rightarrow\) phân số cần tìm là: \(\dfrac{296}{999}=\dfrac{8}{27}\)
Không mất tổng quát, giả sử cả tử và mẫu của phân số cần tìm đều dương.
Gọi phân số đó là \(\dfrac{m}{n}\) với \(m,n\inℕ^∗\), \(m< n\) và \(ƯCLN\left(m,n\right)=1\).
Theo đề bài, ta có: \(\dfrac{m}{n}=\left(\dfrac{a}{b}\right)^3\) (với \(a< b\inℕ^∗\) và \(ƯCLN\left(a,b\right)=1\))
Và \(\dfrac{m}{n}=0,\overline{xyzxyzxyz...}\) \(=\dfrac{x}{10^1}+\dfrac{y}{10^2}+\dfrac{z}{10^3}+\dfrac{x}{10^4}+...\)
\(=x\left(\dfrac{1}{10^1}+\dfrac{1}{10^4}+...\right)+y\left(\dfrac{1}{10^2}+\dfrac{1}{10^5}+...\right)+z\left(\dfrac{1}{10^3}+\dfrac{1}{10^6}+...\right)\)
Ta sẽ rút gọn tổng \(S_1=\dfrac{1}{10^1}+\dfrac{1}{10^4}+...\)
Có \(1000S_1=100+\dfrac{1}{10^1}+...\)
\(\Rightarrow999S_1=100\) \(\Rightarrow S_1=\dfrac{100}{999}\)
Có \(S_2=\dfrac{1}{10^2}+\dfrac{1}{10^5}+...\)
\(\Rightarrow1000S_2=10+\dfrac{1}{10^2}+...\)
\(\Rightarrow999S_2=10\Rightarrow S_2=\dfrac{10}{999}\)
Lại có \(S_3=\dfrac{1}{10^3}+\dfrac{1}{10^6}+...\)
\(\Rightarrow1000S_3=1+\dfrac{1}{10^3}+...\)
\(\Rightarrow999S_3=1\Rightarrow S_3=\dfrac{1}{999}\)
Từ đó ta có \(\dfrac{m}{n}=\dfrac{100x+10y+z}{999}=\dfrac{\overline{xyz}}{999}\), suy ra \(\overline{xyz}< 999\)
Vì \(999=3^3.37\) nên để phân số có thể viết thành lập phương của 1 phân số khác thì \(\overline{xyz}⋮37\). Gọi phân số sau khi rút gọn \(\dfrac{m}{n}\) cho 37 là \(\dfrac{k}{27}\). Khi đó vì \(k\) là 1 lập phương đúng của 1 số nguyên nhỏ hơn 27 nên \(k\in\left\{1,8\right\}\). Thử lại, cả 2 trường hợp đều thỏa mãn.
Vậy các phân số cần tìm là \(\dfrac{1}{27}\) và \(\dfrac{8}{27}\).
\(\dfrac{1}{32}\) = 2-5