a,x+|x-2|=7
b,|x-3|+|x-5|=9
c,|x-1|+|x+1|=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{x-3}=25^9\)
\(\Rightarrow5^{x-3}=\left(5^2\right)^9\)
\(\Rightarrow5^{x-3}=5^{18}\)
\(\Rightarrow x-3=18\)
\(\Rightarrow x=18+3\)
\(\Rightarrow x=21\)
Vậy: x=21
\(5x^2=1620\)
\(\Rightarrow x^2=1620:5\)
\(\Rightarrow x^2=324\)
\(\Rightarrow x^2=18^2\)
\(\Rightarrow\left[{}\begin{matrix}x=18\\x=-18\end{matrix}\right.\)
Vậy: x=18 hoặc x=-18
\(5^x+10x=625+10x\)
\(\Rightarrow5^x=625+10x-10x\)
\(\Rightarrow5^x=625\)
\(\Rightarrow5^x=5^4\)
\(\Rightarrow x=4\)
Vậy x=4
\(2^x:8=4\)
\(\Rightarrow2^x=4\cdot8\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(x=5\)
Vậy: x=5
\(2^x:8=4\)
\(\Rightarrow2^x=4.8\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^5=32\)
\(\Rightarrow x=5\)
A = 1 + 3 + 5 + ... + 299
a) Số số hạng của A:
(299 - 1) : 2 + 1 = 150 (số)
A = (299 + 1) . 150 : 2 = 22500
b) Số hạng thứ 74 của A:
1 + 73 × 2 = 147
a) \(\dfrac{1}{4}+\dfrac{3}{4}:x=-2\)
\(\dfrac{3}{4}:x=-2-\dfrac{1}{4}=\dfrac{-8}{4}-\dfrac{1}{4}\)
\(\dfrac{3}{4}:x=\dfrac{-9}{4}\)
\(x=\dfrac{3}{4}:\dfrac{-9}{4}=\dfrac{3}{4}.\dfrac{-4}{9}\)
\(x=\dfrac{-1}{3}\)
b) \(\dfrac{3}{4}+2.\left(2x-\dfrac{2}{3}\right)=-2\)
\(2.\left(2x-\dfrac{2}{3}\right)=-2-\dfrac{3}{4}=\dfrac{-8}{4}-\dfrac{3}{4}\)
\(2.\left(2x-\dfrac{2}{3}\right)=\dfrac{-11}{4}\)
\(2x-\dfrac{2}{3}=\dfrac{-11}{4}:2=\dfrac{-11}{4}.\dfrac{1}{2}\)
\(2x-\dfrac{2}{3}=\dfrac{-11}{8}\)
\(2x=\dfrac{-11}{8}+\dfrac{2}{3}=\dfrac{-33}{24}+\dfrac{16}{24}\)
\(2x=\dfrac{-17}{24}\)
\(x=\dfrac{-17}{24}:2=\dfrac{-17}{24}.\dfrac{1}{2}\)
\(x=\dfrac{-17}{48}\)
c) \(\left(\dfrac{1}{2}+5x\right).\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}+5x=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{-1}{2}\\2x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{10}\\x=\dfrac{3}{2}\end{matrix}\right.\)
a, 1/4 + 3/4 : x = -2
3/4 : x = -2 - 1/4
3/4 : x = -9/4
x = 3/4 : -9/4
x = -1/3
\(\sqrt[]{x+2}=-100\)
vì \(\sqrt[]{x+2}\ge0\)
Nên phương trình trên vô nghiệm
\(A=\left(x-\dfrac{1}{4}\right)^4+\left|x-2y\right|+1\)
vì \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{4}\right)^4\ge0,\forall x\\\left|x-2y\right|\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow A=\left(x-\dfrac{1}{4}\right)^4+\left|x-2y\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi
\(\left\{{}\begin{matrix}x-\dfrac{1}{4}=0\\x-2y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{x}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{1}{8}\end{matrix}\right.\)
Vậy \(GTNN\left(A\right)=1\left(tạix=\dfrac{1}{4};y=\dfrac{1}{8}\right)\)
Ta có:
(x - 1/4)⁴ ≥ 0 với mọi x ∈ R
(x - 2y)² ≥ 0 với mọi x, y ∈ R
(x - 1/4)⁴ + (x - 2y)² ≥ 0 với mọi x, y ∈ R
(x - 1/4)⁴ + (x - 2y)² + 1 ≥ 1 với mọi x, y ∈ R
Vậy GTNN của A là 1 khi x = 1/4 và y = 1/8
a) \(x+\left|x-2\right|=7\)
\(\Leftrightarrow\left|x-2\right|=7-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=7-x\\x-2=-7+x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=9\\0x=-5\left(loại\right)\end{matrix}\right.\) \(\Leftrightarrow x=\dfrac{9}{2}\)
b) \(\left|x-3\right|+\left|x-5\right|=9\left(1\right)\)
Ta thấy :
\(\left|x-3\right|+\left|x-5\right|\ge\left|x-3+x-5\right|=\left|2x-8\right|\)
\(pt\left(1\right)\Leftrightarrow\left|2x-8\right|=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-8=9\\2x-8=-9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=17\\2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c) \(\left|x-1\right|+\left|x+1\right|=10\left(1\right)\)
Ta thấy :
\(\left|x-1\right|+\left|x+1\right|\ge\left|x-1+x+1\right|=\left|2x\right|\)
\(pt\left(1\right)\Leftrightarrow\left|2x\right|=10\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
a) \(x+\left|x-2\right|=7\)
\(\Rightarrow\left\{{}\begin{matrix}x+\left(x-2\right)=7\left(x\ge2\right)\\x-\left(x-2\right)=7\left(x< 2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+x-2=7\\x-x+2=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x-2=7\\2=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=9\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow2x=-9\)
\(\Rightarrow x=-\dfrac{9}{2}\)