1/2x4+1/4x6+1/6x8+...+1/40x42
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{7}+\dfrac{1}{91}+\dfrac{1}{247}+\dfrac{1}{475}+\dfrac{1}{775}+\dfrac{1}{1147}\)
\(=\dfrac{1}{1.7}+\dfrac{1}{7.13}+\dfrac{1}{13.19}+\dfrac{1}{19.25}+\dfrac{1}{25.31}+\dfrac{1}{31.37}\)
\(=\dfrac{1}{6}\left(1-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{37}\right)\)
\(=\dfrac{1}{6}\left(1-\dfrac{1}{37}\right)\)
\(=\dfrac{1}{6}.\dfrac{36}{37}\)
\(=\dfrac{6}{37}\)
\(#Wendy.Dang\)
Bài 1 a, -5 \(\in\) Q; b, \(\dfrac{2}{-3}\) \(\notin\) I; c, \(\dfrac{3}{-5}\) \(\in\) R
d, N \(\subset\) Z \(\subset\) Q \(\subset\) R
e, -\(\sqrt{25}\) \(\notin\) N; f, \(\sqrt{17}\) \(\in\) R
Bài 2
a, -0,33 \(\in\) Q; b, 0,5241 \(\notin\) I;
c, 1,4142135... \(\in\) R; d, Q \(\subset\) R
`#040911`
`b)`
\(x+\dfrac{1}{2}-x-\dfrac{2}{3}=\dfrac{1}{2}\\ \Rightarrow x+\dfrac{1}{2}-x-\dfrac{2}{3}-\dfrac{1}{2}=0\\ \Rightarrow\left(x-x\right)+\left(\dfrac{1}{2}-\dfrac{2}{3}-\dfrac{1}{2}\right)=0\\ \Rightarrow-\dfrac{2}{3}=0\left(\text{vô lý}\right)\\ \text{Vậy, }x\in\varnothing\)
`c)`
\(\left|x+1\right|=5\\ \Rightarrow\left[{}\begin{matrix}x+1=5\\x+1=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5-1\\x=-5-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=-6\end{matrix}\right.\\ \text{Vậy, }x\in\left\{-6;4\right\}.\)
\(x+\dfrac{1}{2}-x-\dfrac{2}{3}=\dfrac{1}{2}\\ -\dfrac{2}{3}=\dfrac{1}{2}-\dfrac{1}{2}\\ -\dfrac{2}{3}=0\left(vô.lí\right)\\ Không.x.thoả\\ ----\\ \left|x+1\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}x+1=5\\x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-6\end{matrix}\right.\)
`#040911`
`a)`
`2x^2 - 3x = 0`
`\Rightarrow x(2x - 3) = 0`
`\Rightarrow`\(\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=0\\2x=3\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy, \(x\in\left\{0;\dfrac{3}{2}\right\}\)
`b)`
\(x+\dfrac{1}{2}-z-\dfrac{2}{3}=\dfrac{1}{2}?\)
Bạn xem lại đề
`c)`
\(x^3-x^2=0\\ \Rightarrow x^2\cdot\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy, \(x\in\left\{0;1\right\}.\)
\(a,2x^2-3x=0\\ \Leftrightarrow x\left(2x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\\ b,Xem.lại,đề\\ c,x^3-x^2=0\\ \Leftrightarrow x^2.\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
A B C M E H K
a/
Ta có
tg ABC vuông cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{MCA}\)
Mà \(\widehat{ABC}+\widehat{MCA}=180^o-\widehat{A}=180^o-90^o=90^o\)
\(\Rightarrow\widehat{ABC}=\widehat{MCA}=\dfrac{90^o}{2}=45^o\)
Ta có
\(MB=MC\Rightarrow AM\perp BC\Rightarrow\widehat{AMB}=90^o\) (Trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao)
Xét tg vuông AMB
\(\widehat{BAM}=180^o-\left(\widehat{ABC}+\widehat{AMB}\right)=180^o-\left(45^o+90^o\right)=45^o\)
\(\Rightarrow\widehat{BAM}=\widehat{MCA}=45^o\)
b/
Xét tg vuông EAM có
\(\widehat{EAM}=180^o-\left(\widehat{AME}+\widehat{AEM}\right)=180^o-\left(90^o+\widehat{AEM}\right)\) (1)
Xét tg vuông KCE có
\(\widehat{KCE}=180^o-\left(\widehat{CKE}+\widehat{CEK}\right)=180^o-\left(90^o+\widehat{CEK}\right)\) (2)
Mà \(\widehat{AEM}=\widehat{CEK}\) (góc đối đỉnh) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{EAM}=\widehat{KCE}\)
c/
Ta có
\(\widehat{BAM}=\widehat{MCA}=45^o\) (cmt)
\(\widehat{EAM}=\widehat{KCE}\) (cmt)
\(\Rightarrow\widehat{BAM}+\widehat{EAM}=\widehat{MCA}+\widehat{KCE}\Rightarrow\widehat{BAH}=\widehat{ACK}\)
Xét tg vuông BAH và tg vuông ACK có
\(\widehat{BAH}=\widehat{ACK}\) (cmt)
AB=AC (cạnh bên tg cân)
=> tg BAH = tg ACK (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
=> BH=AK
d/
Xét tg vuông AME có
\(\widehat{EAM}+\widehat{AEB}=90^o\)
Xét tg vuông BHE có
\(\widehat{EBH}+\widehat{AEB}=90^o\)
\(\Rightarrow\widehat{EAM}=\widehat{EBH}\) (cùng phụ với \(\widehat{AEB}\) )
Xét tg AMK và tg BMH có
\(\widehat{EAM}=\widehat{EBH}\) (cmt)
AK=BH (cmt)
\(AM=BM=CM=\dfrac{BC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg AMK = tg BMH (c.g.c)=> MH=MK => tg HMK cân tại M
d/
Ta có tg AMK = tg BMH (cmt)
\(\Rightarrow\widehat{AKM}=\widehat{BHM}\)
Mà \(\widehat{BHM}+\widehat{MHK}=\widehat{BHK}=90^o\)
\(\Rightarrow\widehat{AKM}+\widehat{MHK}=90^o\)
Xét tg MHK có
\(\widehat{HMK}=180^o-\left(\widehat{AKM}+\widehat{MHK}\right)=180^o-90^o=90^o\)
=> tg HMK vuông cân tại M
A = (- 1,25)3. (\(\dfrac{2}{5}\))3
A = (-1,25 . \(\dfrac{2}{5}\))3
A = (- \(\dfrac{2}{4}\))3
A = (-\(\dfrac{1}{2}\))3
A = \(\dfrac{-1}{8}\)
Ta thấy: \(\left(x-y+3\right)^2\ge0\forall x;y\)
\(\left|y-3\right|\ge0\forall y\)
\(\Rightarrow\left(x-y+3\right)^2+\left|y-3\right|\ge0\forall x;y\)
Mặt khác: \(\left(x-y+3\right)^2+\left|y-3\right|\le0\)
\(\Rightarrow\left(x-y+3\right)^2+\left|y-3\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y+3\right)^2=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+3=0\\y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3+3=0\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)
Khi đó, biểu thức \(\left(x-2y+6\right)^{10}+27\) trở thành:
\(\left(0-2\cdot3+6\right)^{10}+27\)
\(=\left(-6+6\right)^{10}+27\)
\(=27\)
#Urushi
Vì \(b^2=ac\) ta suy ra \(\dfrac{a}{b}=\dfrac{b}{c}\). Đặt \(a=kb\) và \(b=kc\).
Khi đó \(\dfrac{a}{c}=\dfrac{k\left(kc\right)}{c}=k^2\). (1)
Từ tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{2012b}{2012c}=\dfrac{a+2012b}{b+2012c}=k\), suy ra \(k^2=\dfrac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\). (2)
Từ (1) và (2) suy ra \(k^2=\dfrac{a}{c}=\dfrac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\) (đpcm)
\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{40.42}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{40}-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}.\dfrac{10}{21}\)
\(=\dfrac{5}{21}\)
\(#Wendy.Dang\)
\(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{40\cdot42}\)
\(=\dfrac{1}{2}\cdot\left(2\cdot\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{40\cdot42}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{40\cdot42}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{40}-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{41}{42}\)
\(=\dfrac{41}{84}\)