Cho biểu thức $P=\Big(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\Big) \, : \, \Big(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\Big)$
a) Rút gọn biểu thức $P$.
b) Tìm $a$ để $P>\dfrac{1}{6}.$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1619 và 825
1619 = (24)19 = 276
825 = (23)25 = 275
Vì 275 < 276 nên
1619 > 825
a: \(A=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt[]{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-1-2\sqrt{x}+4}\)
\(=\dfrac{-4x-8\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}}{-\sqrt{x}+3}=\dfrac{-4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)
\(=\dfrac{4x}{\sqrt{x}-3}\)
b: A=-2
=>\(4x=-2\left(\sqrt{x}-3\right)=-2\sqrt{x}+6\)
=>\(4x+2\sqrt{x}-6=0\)
=>\(2x+\sqrt{x}-3=0\)
=>\(\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)
mà \(2\sqrt{x}+3>=3>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}-1=0\)
=>x=1(nhận)
a: \(Q=\dfrac{\sqrt{x^3}-\sqrt{x}+2x-2}{\sqrt{x}+2}\)
\(=\dfrac{x\sqrt{x}-\sqrt{x}+2\left(x-1\right)}{\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}=\dfrac{\left(x-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=x-1\)
\(P=\dfrac{2x-3\sqrt{x}-2}{\sqrt{x}-2}\)
\(=\dfrac{2x-4\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-2}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)+\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)
b: P=Q
=>\(x-1=2\sqrt{x}+1\)
=>\(x-2\sqrt{x}-2=0\)
=>\(x-2\sqrt{x}+1=3\)
=>\(\left(\sqrt{x}-1\right)^2=3\)
mà \(\sqrt{x}-1>=-1\) với mọi x thỏa mãn ĐKXĐ
nên \(\sqrt{x}-1=\sqrt{3}\)
=>\(\sqrt{x}=1+\sqrt{3}\)
=>\(x=\left(1+\sqrt{3}\right)^2=4+2\sqrt{3}\left(nhận\right)\)
a: \(P=\dfrac{3}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-5}{x-1}\)
\(=\dfrac{3}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\left(\sqrt{x}-1\right)-\sqrt{x}-1-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}-3-2\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{1}{\sqrt{x}-1}\)
b: \(x=24-16\sqrt{2}=8\left(3-2\sqrt{2}\right)=8\left(\sqrt{2}-1\right)^2\)
Thay \(x=8\left(\sqrt{2}-1\right)^2\) vào P, ta được:
\(P=\dfrac{1}{\sqrt{8\left(\sqrt{2}-1\right)^2}-1}\)
\(=\dfrac{1}{2\sqrt{2}\left(\sqrt{2}-1\right)-1}=\dfrac{1}{4-2\sqrt{2}-1}\)
\(=\dfrac{1}{3-2\sqrt{2}}=3+2\sqrt{2}\)
ĐKXĐ: x>=0; x<>4
a: Thay x=9 vào A, ta được:
\(A=\dfrac{3}{3-2}=\dfrac{3}{1}=3\)
b: T=A-B
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{2}{\sqrt{x}+2}-\dfrac{4\sqrt{x}}{x-4}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{2}{\sqrt{x}+2}-\dfrac{4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)-2\left(\sqrt{x}-2\right)-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+2\sqrt{x}-2\sqrt{x}+4-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
c: Để T nguyên thì \(\sqrt{x}-2⋮\sqrt{x}+2\)
=>\(\sqrt{x}+2-4⋮\sqrt{x}+2\)
=>\(-4⋮\sqrt{x}+2\)
mà \(\sqrt{x}+2>=2\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}+2\in\left\{2;4\right\}\)
=>\(x\in\left\{0;4\right\}\)
Kết hợp ĐKXĐ, ta được: x=0
a: Thay x=9 vào P, ta được:
\(P=\dfrac{9+3}{\sqrt{9}-2}=\dfrac{12}{3-2}=\dfrac{12}{1}=12\)
b: \(Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
c: Đặt A=P:Q
\(=\dfrac{x+3}{\sqrt{x}-2}:\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{x+3}{\sqrt{x}}=\sqrt{x}+\dfrac{3}{\sqrt{x}}>=2\cdot\sqrt{\sqrt{x}\cdot\dfrac{3}{\sqrt{x}}}=2\sqrt{3}\) với mọi x thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\left(\sqrt{x}\right)^2=3\)
=>x=3(nhận)
a: \(P=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\cdot\sqrt{x}}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: \(2P=2\sqrt{x}+5\)
=>\(2\left(\sqrt{x}+1\right)=\sqrt{x}\left(2\sqrt{x}+5\right)\)
=>\(2x+5\sqrt{x}-2\sqrt{x}-2=0\)
=>\(2x+3\sqrt{x}-2=0\)
=>\(\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)
mà \(\sqrt{x}+2>=2>0\forall x\) thỏa mãn ĐKXĐ
nên \(2\sqrt{x}-1=0\)
=>\(\sqrt{x}=\dfrac{1}{2}\)
=>\(x=\dfrac{1}{4}\left(nhận\right)\)
a) Do x ⋮ 5
⇒ x ∈ B(5) = {0; 5; 10; ...; 35; 40; 45; ...}
Mà x ≤ 40
⇒ x ∈ {0; 5; 10; ...; 35; 40}
b) Do 16 ⋮ x
⇒ x ∈ Ư(16) = {1; 2; 4; 8; 16}
c) 2x + 3 ∈ Ư(10) = {1; 2; 5; 10}
Mà x là số tự nhiên nên 2x + 3 ≥ 3 và 2x + 3 là số tự nhiên lẻ
⇒ 2x + 3 ∈ {5}
⇒ 2x ∈ {2}
⇒ x ∈ {1}
a: \(P=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{a-1-\left(a-4\right)}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
b: P>1/6
=>P-1/6>0
=>\(\dfrac{\sqrt{a}-2}{3\sqrt{a}}-\dfrac{1}{6}>0\)
=>\(\dfrac{6\left(\sqrt{a}-2\right)-3\sqrt{a}}{18\sqrt{a}}>0\)
=>\(6\left(\sqrt{a}-2\right)-3\sqrt{a}>0\)
=>\(3\sqrt{a}-12>0\)
=>\(\sqrt{a}>4\)
=>a>16