K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7

`(-x^3  . y)^5 : (-x^12 . y^2)`

`= (-x^15  . y^5) : (-x^12 . y^2)`

`=` \(\dfrac{-x^{15}.y^5}{-x^{12}.y^2}\)

`=` \(x^3.y^3\)

`= 2^3 .` \(\left(-\dfrac{1}{2}\right)^3\)

`=` \(\left(2.\dfrac{-1}{2}\right)^3\)

`=` \(\left(-1\right)^3=-1\)

23 tháng 7

x(x^2 + xy + y^2) - y(x^2 + xy + y^2)

`= (x-y)(x^2 + xy + y^2)`

`= x^3 - y^3`

`= 10^3 - 1^3`

`= 1000 - 1`

`= 999`

------------------------

`->` Áp dụng hằng đẳng thức: 

`a^3 - b^3 = (a-b)(a^2 + ab + b^2)`

23 tháng 7

\(\left(9x^3y^2+5x^2y-4xy\right):\left(2xy^2\right)\\ =9x^3y^2:2xy^2+5x^2y:2xy^2-4xy:2xy^2\\ =\dfrac{9}{2}x^2+\dfrac{5x}{2y}-\dfrac{2}{y}\)

a: Xét ΔADB và ΔADC có

AD chung

\(\widehat{BAD}=\widehat{CAD}\)

AB=AC

Do đó: ΔADB=ΔADC

b: ΔADB=ΔADC

=>DB=DC

=>D là trung điểm của BC

ΔABD=ΔACD

=>\(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

=>AD\(\perp\)BC
Xét ΔHBC có

HD là đường trung tuyến

HD là đường cao

Do đó ΔHBC cân tại H

c: Xét ΔABC có

BE,AD là các đường trung tuyến

BE cắt AD tại H

Do đó: H là trọng tâm của ΔABC

=>BH=2HE

mà HF=2HE

nên BH=HF

=>H là trung điểm của BF

Xét ΔFBC có

FD,CH là các đường trung tuyến

FD cắt CH tại G

Do đó: G là trọng tâm của ΔFBC

=>BG đi qua trung điểm của CF

23 tháng 7

`(x-2)(x-2) - (x-1)(x+1) `

`= (x-2)^2 - (x^2 - 1)`

`= x^2 - 4x + 4 - x^2 + 1`

`= -4x + 5`

`= -4 . 81 +5`

`= -319`

23 tháng 7

(x - 2)(x - 2) - (x - 1)(x + 1)

= (x^2 - 4) - (x^2 - 1)

= x^2 - 4 - x^2 + 1

= -3 

=> Biểu thức luôn có giá trị là -3 với mọi x 

\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)

=>\(24x^2+16x-9x-6-\left(4x^2+16x+7x+28\right)=10x^2-2x+5x-1\)

=>\(24x^2+7x-6-4x^2-23x-28-10x^2-3x+1=0\)

=>\(10x^2-19x-33=0\)

=>\(10x^2-30x+11x-33=0\)

=>10x(x-3)+11(x-3)=0

=>(x-3)(10x+11)=0

=>\(\left[{}\begin{matrix}x-3=0\\10x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{10}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
23 tháng 7

Lời giải:
Gọi đa thức thương và đa thức dư khi chia $f(x)$ cho $(x+1)(x^2+1)$ lần lượt là $Q(x)$ và $ax^2+bx+c$ với $a,b,c$ là số thực.

Ta có:

$f(x)=(x+1)(x^2+1)Q(x)+ax^2+bx+c$

$f(x)=(x+1)(x^2+1)Q(x)+a(x^2-1)+b(x-1)+(a+b+c)$

$=(x+1)[(x^2+1)Q(x)+a(x-1)+b]+(a+b+c)$

$\Rightarrow f(x)$ chia $x+1$ dư $a+b+c$

$\Rightarrow a+b+c=4(1)$

Lại có:

$f(x)=(x+1)(x^2+1)Q(x)+a(x^2+1)+bx+(c-a)$

$=(x^2+1)[(x+1)Q(x)+a]+bx+(c-a)$

$\Rightarrow f(x)$ chia $x^2+1$ dư $bx+(c-a)$

$\Rightarrow b=2; c-a=3(2)$

Từ $(1); (2)\Rightarrow b=2; c=2,5; a=-0,5$